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a b s t r a c t

Horizontal connections in the primary visual cortex have been hypothesized to play a number of compu-
tational roles: association field for contour completion, surface interpolation, surround suppression, and
saliency computation. Here, we argue that horizontal connections might also serve a critical role for com-
puting the appropriate codes for image representation. That the early visual cortex or V1 explicitly rep-
resents the image we perceive has been a common assumption in computational theories of efficient
coding (Olshausen and Field (1996)), yet such a framework for understanding the circuitry in V1 has
not been seriously entertained in the neurophysiological community. In fact, a number of recent fMRI
and neurophysiological studies cast doubt on the neural validity of such an isomorphic representation
(Cornelissen et al., 2006; von der Heydt et al., 2003). In this study, we investigated, neurophysiologically,
how V1 neurons respond to uniform color surfaces and show that spiking activities of neurons can be
decomposed into three components: a bottom-up feedforward input, an articulation of color tuning
and a contextual modulation signal that is inversely proportional to the distance away from the bounding
contrast border. We demonstrate through computational simulations that the behaviors of a model for
image representation are consistent with many aspects of our neural observations. We conclude that
the hypothesis of isomorphic representation of images in V1 remains viable and this hypothesis suggests
an additional new interpretation of the functional roles of horizontal connections in the primary visual
cortex.

� 2012 Published by Elsevier Ltd.
1. Introduction

When viewing a figure of solid color or brightness as Fig. 1A, we
perceive a color or luminance surface. Yet, neurons in the retina and
the LGN are mostly excited by chromatic and luminance contrast
borders. The earliest theoretical explanation of this perception is
advanced by the Retinex Theory (Land, 1977), which argues that
there is a process for recovering reflectance or perceived lightness
within a region based on contrast signals provided by the retinal
neurons. This model was implemented in 2D by Horn (1974) using
an iterative algorithm with neighboring units propagating bright-
ness measures from contrast borders. Subsequently, Grossberg
and Mingolla (1985) proposed the feature contour system/bound-
ary contour system model for V1 in which they described a diffu-
sion-like propagation of brightness and color signals from the
luminance and chromatic contrast borders to the surface interior
via a syncytium in the brightness and color channels respectively.

Neurophysiological evidence for isomorphic representation,
particularly in the context of color and brightness representations
Elsevier Ltd.
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have recently become controversial. While some neurophysiologi-
cal studies (Rossi et al., 1996; Kinoshita and Komatsu, 2001; Sasaki
and Watanabe, 2004; Roe et al., 2005; Huang and Paradiso, 2008)
yielded results that might be consistent with brightness and color
filling-in in V1 and V2, von der Heydt et al. (2003) single unit
recordings, and Cornelissen et al.’s (2006) fMRI studies argued that
V1 responses did not appear to support isomorphic representation.
These latter authors argued that mental representation of solid
color on a surface might be inferred by the brain simply based
on chromatic or luminance contrast responses in V1, without
needing to synthesize an isomorphic or explicit representation of
the input image or mental image in the early visual cortex. Here,
we performed single-unit neurophysiological experiments and
computational simulations to understand the relationship between
color coding and contextual modulation and demonstrated that an
image segmentation-based computational model with recurrent
horizontal connections accounts for many neurophysiological
observations. Our studies suggest that the dynamics of a model
for simple image representation accounts for psychologically
observed brightness filling-in effects in contrast to classical models
based on diffusion mechanisms (Grossberg and Mingolla, 1985;
Arrington, 1994). Taken together, these findings support a theory
for isomorphic representation of perceptual images in the primary
visual cortex.
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Fig. 1. A pair of complementary stimuli tested: a red figure in a green background, and a green figure in a red background. The other pair is blue/yellow figure in yellow/blue
background. Crosses indicate the 12 RF locations of the neuron for each image to be sampled. The spatiotemporal response profiles of three neurons (one per row) in response
to the pair of stimuli above. Each graph depicts the temporal evolution of neural responses at the different spatial locations (indicated by X). The response is normalized
against the maximum response of each cell to the pair of the complementary stimuli for easy visualization. The center of the figure in the stimulus was located at 0� along the
x location axis, with the borders of the figure located at �2� and 2�. Temporal evolution of the spatial representations of 3 V1 cells to the red figure (4�) in the green
background (left column) and to the green figure in the red background (middle column). At right, the sum of both responses.
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2. Neurophysiological methods

We will first describe our neurophysiological observations, and
then present computational simulations to account for these
observations. Neurophysiology was performed on two awake,
behaving monkeys. Single-unit recordings were made transdurally
from the primary visual cortex of the monkeys with epoxy-coated
tungsten electrodes through a surgically implanted well overlying
the operculum of area V1. The receptive field (RF) of each cell was
mapped with a small bar and with a texture patch to determine the
minimum responsive field. The receptive fields were located
Please cite this article in press as: Yan, X., et al. Neural dynamics of image repre
10.1016/j.jphysparis.2012.08.006
between 0.5–4� eccentricity in the lower left quadrant of the visual
field and ranged from 0.5–1� in size, while accounting for eye
movement jitter. The recording procedure and experimental setup
are documented in Lee et al. (2002).

During recording and stimulus presentation the monkeys per-
formed a standard fixation task, where they were trained to fixate
on a dot within a 0.7� window on a computer monitor, 58 cm away.
After stimulus presentation within a particular trial the fixation dot
relocated to another random location, and the monkey was re-
quired to saccade to the new location to successfully complete
the trial and obtain a juice reward. Each trial had a constant
sentation in the primary visual cortex. J. Physiol. (2012), http://dx.doi.org/
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duration. The stimulus for each condition was presented statically
on the screen in each trial. Conditions were repeated 20–30 times
per trial and randomly interleaved.

Stimuli were presented on a Sony Multisync color video display
monitor driven by a TIGAR graphics board via the Cortex data
acquisition program developed by NIH. The resolution of the dis-
play was 640 � 480 pixels, and the frame rate was 60 Hz. The
screen size was 32 � 24 cm. When viewed from a distance of
58 cm, the full screen subtended a visual field 32� � 24� of visual
angle. One pixel corresponded to a visual angle of 0.05�.

The stimuli contained a color figure within a contrasting color
background. Four contrasting color pairs were tested: red/green
and blue/yellow. Fig. 1A illustrates the red–green stimulus pair.
The four colors, plus the intertrial gray, were equiluminant at
7.4 cd/m2, as measured using Tektronix J17 Lumacolor Photome-
ter/Colorimeter. Their values in CIE coordinates (x,y) are
(0.603,0.364) for red, (0.286,0.617) for green, (0.454,0.481) for yel-
low and (0.149,0.066) for blue. In the LMS coordinate system, the
cone contrast of red or blue relative to the gray is approximately
the same and more than twice that of green or yellow. The colors
were chosen to be as saturated as possible; subject only to the
equiluminant constraint.

Note that while the colors we used are comparable to the
CIE chromatic values of the colors used in some color studies
(Livingston and Hubel, 1984; Hubel and Livingston, 1990; von
der Heydt et al., 2003), colors used in other color tuning or color-
coding experiments (Conway, 2001; Conway et al., 2002; Wachtler
et al., 2003) are chosen to have equal cone contrasts relative to the
adapting gray. This constraint is important for assessing the
contributions from the L, M, S cone inputs to the neuron in
question. However, these ‘balanced’ colors tend to be unsaturated,
pastel-looking in appearance and not very salient. The equilumi-
nant colors we used were not equalized in cone contrast. Thus,
the color tuning curves we obtained are not based purely on color,
but subject to influence of cone-contrast as well. Our color tuning
curve should be interpreted with caution in that regard.

We consider our choice acceptable for the purpose of our ques-
tions for the following reasons. First, it is well known that V1 neu-
rons’ color preferences are fairly diverse and dispersed, covering a
variety of colors, and are no longer limited to the canonical LMS
cone axis (Lennie and Movshon, 2005). Hanazawa et al. (2000) dem-
onstrated that V1 cells’ color tunings exhibit preference to a variety
of cues and saturation, suggesting an elaboration of color tuning to
support color perception. Second, neurons we studied here exhib-
ited a diversity of tuning preferences for the different colors, indi-
cating that V1 neurons are not slaves of the cone-contrast
sensitivity but are articulating their own preferences for different
colors. The main focus of our study is the relationship between col-
or coding signals and contextual modulation signals. For this partic-
ular focus, any set of colors that span the color space and are
preferred differently by different neurons would serve our purpose.

In these experiments, we only studied neurons that exhibited
sustained response when their localized receptive fields were fully
contained within a uniform (solid) color region. The waveform of
the spikes had a SNR of at least 1.5 in peak-to-peak amplitude
relative to the background noise. The analysis here is based on sin-
gle-unit and multi-unit activities. Single units and multi-units are
analyzed and reported separately in some cases (Fig. 5). If we could
not qualitatively distinguish the behavior of single-units and mul-
ti-units, we lumped them together in population analysis. Many
cells responded well to oriented bars but not to uniform color
surfaces. These neurons were also omitted from this study. The
color-sensitive cells studied here were about 15% of the cells
encountered. These cells respond vigorously to chromatic edges
and chromatic surfaces. We found a tendency for cells with the
same color preference to cluster together in a given recording
Please cite this article in press as: Yan, X., et al. Neural dynamics of image repre
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penetration. For example, in one single session, we would encoun-
ter many blue cells, while in another session, we would encounter
many red cells.
3. Spatiotemporal dynamics of neural responses to color stimuli

We first studied the spatiotemporal dynamics of neural re-
sponses to stimulus images that contain a 4� � 4� solid color figure
against a contrasting equiluminant color background (Fig. 1 top
row). One stimulus image contains a red figure in a green back-
ground while the other contains a green figure in a red background.
Each image was presented statically on the screen for 350 ms in
each trial. The image was shifted spatially over successive trials,
placing the figure at one of the 12 locations relative to the recep-
tive field at 0.66� or 1� intervals, spanning a range of over 10� (as
shown in Fig. 1A). This allows monitoring the temporal evolution
of the neuron’s response to each particular spatial location of the
image, analogous to Lamme (1995) and Lee et al. (1998)’s spatial
sampling experiments on texture stimuli.

Fig. 1 presents the temporal responses of three representative
V1 neurons to 12 different spatial locations of each of the image
pairs shown. Neurons tended to exhibit strong and sustained re-
sponses at the boundary, but many cells also exhibited weak sus-
tained responses to the solid color surface where there were no
contrast features within the receptive fields. At 2–4� eccentricity,
the sizes of the receptive fields were typically less than 1� in spatial
extent. Thus, the figure was at least four times the diameter of the
receptive field of the tested neuron.

Each row represents the spatiotemporal response of a neuron to
the red figure green ground stimulus (first column), to the green
figure red ground stimulus (second column), and the sum of the re-
sponses of the first two columns at each corresponding location.
The first neuron (row 1) showed significant responses at the
boundaries of both figures and inside the green figure, but weaker
in the green background and less in the red figure and red ground.
When the two spatiotemporal responses are combined (third col-
umn), there is a significantly greater response inside the figure
than the background despite the neuron’s response to red and
green stimuli in both the figure and ground cases. This cell is said
to exhibit a figure enhancement effect.

The second neuron (row 2) showed sustained response to both
the red and green figure surfaces, and little response to the ground
regardless of color. Interestingly, even though the neuron re-
sponded strongly to both edges of the figure for both stimuli at
the beginning, over time its peak response was localized to the
right border of both color conditions. This describes von der Heydt
and colleagues’ border-ownership cell, i.e. this cell signaled which
side of the border of a figure it was analyzing. Two interesting ef-
fects shown here depart from their earlier observation (Zhou et al.,
2000): (1) the cell also responded to the figure more than the back-
ground, thus exhibiting both figure enhancement effect as well as
border-ownership effect; and (2) the cell responded initially to
both borders, the border ownership signal emerged at the later
part of the response.

The third neuron (row 3) initially showed a general preference to
red but later develops a stronger response to the green figure (first
and second columns). This is another case of the figure enhance-
ment effect without a strong sustained response at the borders.

These are just some special examples. We now summarize our
general observations of the population of cells’ responses. First,
the transition from a gray screen to color figure produced a tempo-
ral chromatic contrast signal that elicited a fast initial neural
response. Although the stimuli were of the same luminance as that
of the gray screen, the different color sensitivities of retinal cones
provided a differential bottom-up response to the V1 neurons.
sentation in the primary visual cortex. J. Physiol. (2012), http://dx.doi.org/
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Secondly, in the later part of the responses, at a maximum of 100 ms
after stimulus onset, the neurons exhibited preferences to the dif-
ferent colors inside the figure and ground, independent of the initial
bottom-up response. Some neurons preferred red, while other neu-
rons preferred green in the later part of their responses. Thirdly, we
found many neurons’ responses were stronger when their receptive
fields were inside the figure than when their receptive fields were
inside the background. This is evident in the first two neurons
shown in Fig. 1. Fig. 2 shows the spatial response profile of these
two neurons in different time windows post-stimulus onset to illus-
trate more precisely the strong initial responses at the boundary,
and the subsequent differential response between the 4-degree fig-
ure (between �2 and 2 along the x-axis) and the background.
4. Figure enhancement contextual modulation

The differential response of the neurons to figure and back-
ground in these color stimuli is analogous to the figure enhance-
ment observed by Lamme (1995) on texture figures. Fig. 3 shows
the population averaged responses of 82 V1 single-units and mul-
ti-units in response to three distinct regions (the figure center, the
figure border, and 2� outside the figure border) of the two test
stimuli shown in Fig. 1. Each cells’ peri-stimulus time histogram
(PSTH) was smoothed with a 10 ms window before population
averaging. The population responses were initially stronger for
the red figure than for the green background (Fig. 3A), and were
initially stronger for the red background than the green figure
(Fig. 3B). These results indicate that the red stimulus, or more pre-
cisely, the transition from gray to red, might be a more potent bot-
tom-up stimulus. However, over time, the later part of the
population PSTH was stronger in the green figure than in the red
background (Fig. 3B). Thus, the sustained neural activity in the la-
ter response is stronger inside the figure than the background,
regardless of the color of the receptive field stimulus. This is a
rather dramatic effect and was not observed in neural responses
to texture stimuli (Lamme, 1995; Lee et al., 1998).

Fig. 3C and D compare the average temporal response of this
population to the same receptive field stimulus (red or green
respectively) in the figure (center) condition and in the background
condition (2� outside). The responses to the figure and the back-
ground conditions begin diverging significantly at 70 ms for red
and 66 ms for green. We assessed the figure enhancement onset
time for each neuron by performing a running t-test with a
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window of 20 ms, starting with stimulus onset, to determine when
the responses (across different trials) at the figure center became
greater than the responses in the surround with statistical signifi-
cance (with a P < 0.05). To make the estimation robust against
noise, we additionally required the enhancement be statistically
significant for at least 70% of the subsequent 20 windows, shifted
by 1-ms step.

The ’figural enhancement’ response, as observed by Lamme for
texture stimuli, is an enhancement in response for identical recep-
tive field stimulus within the figure than when in the background.
However, this effect for color figure stimuli is much greater than
that for texture stimuli (Lamme, 1995; Zipser et al., 1996; Lee
et al., 1998; Rossi et al., 2001). The onset time of the figure
enhancement effect for color stimuli could be as early as 50–
60 ms, but on average emerge in the later part (approximately
100 ms post-stimulus onset) of the response (see Fig. 3E and F).
5. Figure enhancement and color selectivity

To evaluate the figural enhancement effect as a function of col-
or, we measured 81 V1 single and multi-units’ responses (54 from
monkey D, and 27 from monkey B) to the four colors (equiluminant
red/green and yellow/blue stimuli) when the receptive field was at
the center of the figure and in the background (5� away from the
figure’s border). Responses to equiluminant gray screen was used
as baseline. Fig. 4 shows a typical neuron’s response to the four col-
ors in the figure condition (first row) and the ground condition
(second row). It can be observed that the neuron’s responses when
its receptive field was inside the figure was significantly stronger
than its responses when its receptive field was in the background,
for all four colors.

To compare the figure enhancement effect observed in color fig-
ures with data from earlier texture studies (Lamme, 1995; Zipser
et al., 1996; Lee et al., 1998; Rossi et al., 2001), we computed the
figure enhancement index for each color as (F � G)/(F + G), where
F is the response of the cell inside the figure of a particular color,
and G is the response inside the background of the same color.
Fig. 5 shows the scatter plots of the figure enhancement indices
for the four colors, with single units labeled in solid dots and mul-
ti-unit labeled in empty circles. The results from single units and
multi-units are basically the same for this measure, so we lumped
them together. The mean figure enhancement indices in this
population of V1 neurons are 0.26, 0.36, 0.24, 0.38 for red, green,
0
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same RF color stimulus in the figure or the ground context. Border response is also shown for reference. (E and F) Distribution of the figure enhancement onset time for red
surface and green surface.
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yellow and blue figures respectively, which are much stronger than
the mean figure enhancement index (about 0.1) observed in V1 for
texture stimuli (Lee et al., 1998). We found 51% of the cells showed
significant enhancement for all four colors, 27% for three, 16% for
two, 6% for one color only. Thus, the figure-enhancement effect ob-
served in solid color figures is significantly stronger than the effect
observed for texture stimuli.

While many of the recorded neurons tended to exhibit stronger
initial responses to red or blue than to green or yellow initially, the
later part of their responses can exhibit preference to any of these
colors. Figs. 1 and 2 show examples of single-cells and Fig. 3B
shows population averages that initially responded predominantly
to red ground and later to green figure. This later dominance of re-
sponse to the green figure over red background in Fig. 3B can arise
from a stronger response inside the figure due to figure enhance-
ment and/or a development of a preference for green color in the
same neurons.

To separate the effects of figure enhancement and color prefer-
ence, we analyzed the neuronal responses to red and green in either
Please cite this article in press as: Yan, X., et al. Neural dynamics of image repre
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the figure context or the background context separately. We sepa-
rated the cells into groups depending on their color preference
based on the later part of their responses to the different colors in
the figure condition. The responses of the neurons that ultimately
prefer green over red are the most revealing, as shown in Fig. 6.
Among these 81 neurons, 25 exhibited preference for green over
other colors in the later part of their responses. From their popula-
tion PSTHs in response to red and green figures (Fig. 6A), and red
and green backgrounds (Fig. 6B), in both cases we observed that
the response to the green surface became greater than the response
to the red surface at about 90 ms. We estimated the contextual col-
or preference onset for each of the green-preferring cells, based on
the time its response to green overtook its response to red, using the
same running t-test used for estimating figure enhancement onset.
Fig. 6C and D show the distribution of the contextual color tuning
onset (based on green–red crossing), yielding a mean of 103 ms
for the figure condition, and 117 ms for the background condition.

We take this later onset of preference for green, or other colors,
over red, as evidence for the articulation of color preference in V1
sentation in the primary visual cortex. J. Physiol. (2012), http://dx.doi.org/

http://dx.doi.org/10.1016/j.jphysparis.2012.08.006
http://dx.doi.org/10.1016/j.jphysparis.2012.08.006


Fig. 4. A V1 neuron’s response to the four colors in the figure condition (first row) and the ground condition (second row). This neuron cell prefers yellow the most, but also
responds considerably to blue. Comparing the first row (responses when the cell’s receptive field is inside the color figures) and the second row (responses when the cell’s
receptive field is in the background with the same color as the figure’s color in the first row), we found the responses were stronger in the first row than the second row for
each corresponding color (column), even though the stimuli over the receptive field were identical for each column. The receptive field diameter was 1� and was ‘‘looking at’’
the center of a figure of 4-degree in diameter.
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neurons happening in the later part of their responses. We com-
puted likewise the figure enhancement modulation onset for this
population of neurons. The distribution of figure enhancement ef-
fect (Fig. 6E) shows a mean of 113 ms (median = 101 ms), compara-
ble to the distribution of color tuning onset time observed above.
Fig. 6F compares the color tuning onset and the figure enhancement
onset estimated for each neuron. Except for three or four neurons,
whose figure enhancement onset was significantly delayed relative
to color tuning onset, the figure enhancement and the color tuning
appeared to emerge almost simultaneously for most neurons inside
the 4� � 4� figure, lagging behind the border response by 70 ms.
Please cite this article in press as: Yan, X., et al. Neural dynamics of image repre
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We found the neurons’ preferences for color in the later part of
their responses were diverse, preferring different colors. Fig. 7
shows example tuning curves of four neurons preferring the four
distinct colors in both the figure and the background conditions.
Among the 81 selected color sensitive cells studied, 17 of them pre-
ferred red, 36 cells preferred green, 28 cells preferred yellow, and
18 cells preferred blue. However, the 17 ‘red’ cells and the 36
‘yellow’ cells have 6 cells in common, i.e. these cells prefer red
and yellow almost equally (‘orange’ cells). Similarly, there were
13 cells (’yellowish green’ cells) shared by the yellow cells and
the green cells, 8 cells (’cyan’ cells) shared by the green cells and
sentation in the primary visual cortex. J. Physiol. (2012), http://dx.doi.org/
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Fig. 6. (A and B) Population average PSTHs of 25 green cells in response to the green figure versus the red figure (A), and to the green ground versus the red ground (B). (C and
D) Distribution of onset of contextual color tuning in these green neurons in the figure condition (C) and the ground condition (D). (E) Distribution of onset timing of the figure
enhancement effect for these green neurons. (F) Comparison of the figure enhancement onset time and the contextual color tuning onset time of a subset of neurons. Each
point indicates the onset times estimated from the responses of a neuron.
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the blue cells, and 6 cells (’magenta’ cells) shared by the blue cells
and red cells. The remaining 15 preferred antagonistic colors – (red
and green) or (blue and yellow). The final set preferred one or two
(non-opponent color) of the four colors strongly over the rest. For
neurons that were sharply tuned to one of the four tested colors,
most exhibit similar color tunings in figure and ground conditions.
For neurons that were more broadly tuned in either condition, over
half exhibited some changes in the color preference between the
figure and ground conditions.

Overall, the neurons we studied appeared to be tuned to a spec-
trum of color in the later part of their responses, as described in
Hanazawa et al. (2000).
Please cite this article in press as: Yan, X., et al. Neural dynamics of image repre
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6. Timing and contribution of contextual modulation

The articulation of color tuning and the figure enhancement ef-
fect appeared to emerge at the same time, with an average latency
around 80–100 ms. This was significantly later than the responses
to the boundary (30–50 ms), and therefore might involve contex-
tual modulation. To what extent are the neural responses to color
surfaces due to receptive field stimulation or contextual modula-
tion? To separate receptive field effect and contextual effect, and
to measure the time course of the contextual modulation more
precisely, we designed the paradigm as shown in Fig. 8A to decom-
pose the receptive field stimulation and the contextual modulation.
sentation in the primary visual cortex. J. Physiol. (2012), http://dx.doi.org/
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Fig. 7. Examples of color tuning in four individual neurons, preferring one of the four colors. The thick line is the color tuning in the figure condition while the thin line is the
color tuning in the ground condition. Typically, these cells exhibit stronger responses when they are in the figure condition than when they are in the ground condition, for
their preferred as well as less preferred colors.
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Fig. 8. (A) Asynchronous update paradigm. The entire screen was turned red at �350 ms, followed by the appearance of a green background surrounding the RF at 0 ms,
making visible a circular red disk over the RF. (B) Population PSTH of cells responding to red figure (left panel) and green figure (right panel) of different diameters (1, 3, 5, 9�)
as well as full color screen. Surround update occurred at 0 ms. Only 12 cells were recorded for the 1� figure later on in this experiment to provide a reference for the onset of
boundary response. All other sizes were tested with 55 neurons. Note that the graph of the average response to the 1� figure appeared to be different from those for the other
sizes after the first update even though the stimulus is identical. This is because the average is based on 12 neurons, while the others are based on 55 neurons. (C) Mean
response onset to ‘red figure’ subsequent to surround update as a function of the figure’s diameter (left panel). Mean response onset to the ‘green figure’ (right panel).
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An additional 55 neurons were tested, drawn evenly from the two
monkeys.

In each trial, while the monkey fixated, the color of the full
screen was first changed from gray (which was presented between
trials) to one of the four colors; 350 ms later, the region outside
and surrounding the receptive field of the neuron was abruptly
changed to a contrasting color, making visible a disk figure over
the receptive field without changing the receptive field stimulus. Fig-
ures of four sizes (1, 3, 6, 9� in diameter) were presented across tri-
als. Each remained on the screen for 400 ms.

When the entire screen changed color in the first update, V1
neurons typically gave a transient weak response followed by a
weak sustained response. When the surround changed to another
color in the second (surround) update, the neurons gave a strong
and sustained response, even though nothing was changed within
the receptive field or in its proximal surround. This response to the
contextual stimulation is in fact much stronger than the direct
receptive field stimulation in the first update, as shown in the
PSTHs in Fig. 8B.

The responses to the second (surround) update (at 0 ms) were
sustained and were statistically significant (relative to the base-
line) for 27 cells for the 3-degree figure, 20 cells for the 6-degree
figure, and 17 cells for the 9-degree figure. The strength and sus-
tained nature of this signal suggests that much of the sustained
neural responses to color surfaces in our first experiment in fact
came from contextual modulation.

For the 1� figure the chromatic contrast border in the second
update likely encroached on the receptive fields of the cells, lead-
ing to rather rapid responses (53 ms response onset for red figure,
and 36 ms for green figure estimated population PSTH). For the lar-
ger disks, the chromatic borders were outside and relatively far
away from the receptive fields of the cells. The spatial extent of
all the receptive fields was less than 1� in diameter. We found
the onset of this contextual response was increasingly delayed
with an increase in the size of the disk, or the distance of the chro-
matic border. The mean onset time of the contextual responses,
estimated based on the cells that showed measurable and signifi-
cant responses, were 86, 112, 116 ms for red figure of 1,3,6,9� in
diameter, 62, 76, 101 ms for green figure, 81, 100, 107 ms for yel-
low figure, and 67, 93, 115 for blue figure respectively.

This response onset time metric is often used in physiological
experiments (Maunsell and Gibson, 1992; Huang and Paradiso,
2008) to estimate response onset, and corresponds well to the time
at which such percept is detectable in humans. Sometimes, it is
used to infer propagation delay (Huang and Paradiso, 2008). How-
ever, it is really just the time relative to stimulus onset at which
the responses to the contextual modulation became statistically
discernible from the baseline activities. We believe a more appro-
priate name should be ‘‘detectable response’’ time, as a slower
detectable response time could arise from an input arriving at
the cell later, or the input signal being weak and thus taking longer
to integrate to threshold. We explored various ways to distinguish
the two scenarios but could not come to a solid conclusion. We
found there was a delay of 14 ms between the peak response time
to the 6-degree figure relative to that of the 3-degree figure, but
the estimated peak time for the 9-degree figure was actually short-
er than both. In any case, whether the detectable response delay is
due to slower arrival of input or a weaker input is not crucial from
the perspective of our theoretical framework to be discussed next.
7. Theoretical model of image representation

What is the nature of the contextual modulation signal coming
from the chromatic contrast border? One can argue that in this sec-
ond experiment (Fig. 8), the neural code for color should have been
Please cite this article in press as: Yan, X., et al. Neural dynamics of image repre
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established after the first update, since the screen was readily per-
ceived as red before the second update took place. Thus, the wave
of strong contextual modulation should not be signaling color, but
representing something different such as figure-ground segrega-
tion or perceptual saliency that modulates the color codes. This
reasoning rests on the implicit assumption that uniform brightness
or color are represented by spatially uniform neural activities in
neurons of a particular chromatic or brightness channel. Such an
assumption is not necessarily correct.

We will now discuss a model that suggests that activities of the
neurons for representing an image could change as a function of
the global image as a whole, even though the receptive field
stimulus of the neurons remains constant. We call this the image
representation model (Daugman, 1988; Lee, 1996), which assumes
faithful image representation is an objective of the primary visual
cortex. Such a model is also the basis of sparse coding in develop-
ment or learning of the simple cell receptive fields in V1
(Olshausen and Field (1996)). This model prescribes that V1 simple
cells, modeled as an overcomplete set Gabor wavelets, can be used
to synthesize or represent any arbitrary image (Daugman, 1988;
Lee, 1996):

bIðx; yÞ ¼X
i

ai/i þ n ð1Þ

where n is noise or factors unaccounted for. The represented (input
or perceived) image bI attempts to explain the input image I(x,y) as a
linear weighted sums of wavelets. The weight ai of each wavelet /i

(presumably the firing rates of simple cells) are obtained by mini-
mizing the following objective function, which is the squared error
of how well these weighted sum can explain the image (Eq. (2)),

E ¼
X
x;y

ðIðx; yÞ �bIðx; yÞÞ2 ¼X
x;y

ðIðx; yÞ �
X

i

ai/iÞ
2 ð2Þ

The / is related to the synthesis basis of a simple cell, which is com-
plementary to the conventional filter notion of receptive field, and
ai the cell’s firing rate. It has been shown that the filters and the ba-
sis derived from independent analysis resembled the receptive
fields of V1 neurons.

The Gabor wavelet representation that we used, as in the brain,
is overcomplete (Lee, 1996). Hence, the initial responses ai of the
cells, computed from receptive field linear filtering, produce a
highly redundant representation, even though individually they
can be learned based on the sparseness principle. We can adjust
ai of all the neurons over time to reduce the redundancy of the rep-
resentation by minimizing the squared error above. This can be
accomplished by taking the partial derivative of E with respect to
ai and obtain the following descent equation,

dai

dt
¼ � dE

dai

¼ 2
X
x;y

Iðx; yÞ/iðx; yÞ � 2
Xn

k

X
x;y

akðx; yÞ/kðx; yÞ/iðx; yÞ ð3Þ

The first term of the descent equation (Eq. (3)) specifies the feedfor-
ward input to the neuron based on its receptive field, which is given
by the dot product between the receptive field and the input
stimulus. The second term specifies that the interactions between
neuron i and any other Gabor wavelet neuron depends on their
redundancy, or overlap in their receptive fields. That is, two neurons
will inhibit each other when the dot product of their ‘receptive
fields’ are positive, and facilitate each other when the dot products
of their ‘receptive fields’ are negative. When their receptive fields
are orthogonal, i.e. zero dot product, there will be no interaction
between them. Note that the interactions in this model are strictly
local, between neurons of overlapping receptive fields. Association
fields for contour completion is not considered in this model. The
sentation in the primary visual cortex. J. Physiol. (2012), http://dx.doi.org/
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second term can be interpreted and implemented by horizontal
connections between the neurons. As the error function is convex,
simple gradient descent can be used to compute ai that minimizes
the error. Here, we assume the number of iterations can be com-
pared qualitatively to the time elapsed post-stimulus onset.

The implemented model consists of a retinotopic map of corti-
cal hypercolumns covering an input image of 192 � 192 pixels. We
do not model the change in retinal or cortical receptive field size as
a function of eccentricity, i.e. the spatial resolution is assumed to
be uniform across the retinotopic map. The pixel intensities of
the input image were rescaled to max (white) of 127.5, min (black)
of �127.5 and mean (gray) of 0. The image was represented by a
set of Gabor wavelets specified by (Eq. (4)), as in Lee (1996). The
Gabor wavelets were constrained to a single scale with eight orien-
tations, at 22.5� intervals. In each orientation, the Gabor filters ex-
ist in both even and odd-symmetric forms, with zero d.c. response
(Lee, 1996).

/ðx; y;xo; hÞ ¼
xoffiffiffiffiffiffiffi
2p
p

j
e�

x2
o

8j2ð4ðx cos hþy sin hÞ2þð�x sin hþy cos hÞ2Þ

� eixoðx cos hþy sin hÞ � e�
j2
2

� �
ð4Þ

For simplicity, we only used the model with the single (finest) scale,
with a spatial sampling of 2 pixels, spatial frequency of 0.314 pixels,
spatial frequency bandwidth of 3.5 octaves, and two spatial phases,
i.e. even and odd symmetric Gabor wavelets, which is sufficient to
represent uniform luminance images. We have also tried multi-
scale representations as in Lee (1996) and found the results to be
qualitatively similar.

These zero-dc wavelets, in both sine and cosine varieties, will
have zero feedforward responses to uniform luminance or color
stimulus. Yet, this set of overcomplete wavelets are known to be
able to represent arbitrary images, we want to know how this
could be done and what the activity ai would be in order to repre-
sent the uniform luminance or color surface.

Without loss of generality, we considered the luminance Gabor
wavelets here, and tested the responses of the neurons to a disk of
uniform luminance. We examined the spatial and temporal evolu-
tion of the synthesized image bI, the wavelet coefficients, as well as
the sum of the absolute values of wavelets of both sine and cosine
varieties. The represented images were rescaled to 8-bit, grayscale,
pixel intensities. Individual hypercolumn responses represent the
average magnitude response of all the wavelets /i at each scale
populating that corresponding spatial location.

Our conjecture is that the spatiotemporal profile of neural re-
sponses observed in experiments can be understood in terms of
the spatiotemporal profile of the wavelet coefficients (or its abso-
lute value) for representing the luminance disk.
8. Filling-in and image representation

Fig. 9 shows that a white disk and a black disk can be repre-
sented by these zero-dc wavelets, and the ‘neural activities’ re-
quired to accomplish the representation. The temporal evolution
of the synthesized image bIðx; yÞ shows first a representation of
the contrast border of the white disk, followed by a filling-in of
brightness in the surface of the disk. To examine the evolution of
total neural responses within each hypercolumn at different spatial
locations across a cross-section of the disk along midline that
accompany the evolution of the represented image (Fig. 9), we
summed the absolute values of the coefficients of Gabor wavelets
(all orientations, even and odd-symmetric) at each location. Note
that all these neurons are orientation tuned with zero dc compo-
nents. Over time (iterations), the coefficients (firing rates) can be
adjusted so that these Gabor wavelets can represent the disk
Please cite this article in press as: Yan, X., et al. Neural dynamics of image repre
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perfectly. This simulation shows that even though a uniform
brightness disk is represented at the end, the sum of neural activ-
ities across the hypercolumn is not uniform across space.

It is interesting to note that the temporal evolution of the syn-
thesized image by gradient descent through network interaction
exhibit the same brightness filling-in dynamics observed by Parad-
iso and Nakayama (1991) in their psychophysical experiments. The
final column is illustrative of the fact that a uniform luminance
disk can be represented by these population of wavelet neurons
with a distribution of coefficients that emphasize on the edge over
the interior, which become a bit more smoothed over time. The re-
sponse plotted here is the sum of neurons of all orientations at
each spatial location, and is comparable to the observations in Cor-
nelissen et al.’s (2006) fMRI study, in which every voxel was the
BOLD signal that reflect the sum of activities of all neurons in the
voxel.

Fig. 10 dissects this population response, plotting only the re-
sponses of vertical and horizontal selective neurons, each of the
even and odd symmetric varieties (receptive fields are shown in
the icons). The figure was also made smaller than that in Fig. 9.
It reveals that the odd symmetric vertical cells are responsible
for the lion share of the representation. Their responses started
with sharp edge responses that spread out over time. The even
symmetric neurons, of both vertical and horizontal orientation
selectivities started out with edge responses but exhibited uniform
enhancement (or responses) inside the bright disks later on. Note
that here the on-center even-symmetric cells exhibited the
enhancement in this example of a bright disk, while the off-center
even-symmetric cells would exhibit the enhancement inside the
figure in response to the black disk stimulus. Complex cells can
be modeled as the sum of the absolute or squared values of simple
cells of 4 phases for each orientation and exhibit enhancement
within the figure.

Temporally, strong response was observed at the contrast bor-
der of the disk immediately after stimulus onset, which rapidly de-
clined and approached steady-state over time. The latencies to
achieve steady state response by the surface hypercolumns mono-
tonically increases with distance from the border to the center. The
steady-state average magnitude response of the cross-sectional
hypercolumns also decreases with increasing distance from the
border (Fig. 11), as we observed in our physiological data. When
we made the size of the disk smaller (comparing Figs. 9 and 10),
the convergence to steady state was more rapid, and the responses
inside the figure also became more elevated relative to the re-
sponses of the background (see Fig. 10). Thus, the magnitude of
the responses the neurons with their receptive fields at the center
of the disk will decrease, and detectable response onset latency in-
creases as the size of the disk increases, as observed in our second
experiment.

The progressive delay of detectable response onset to color fig-
ure in our experiment and in our simulation as a function of size of
the figure is similar to what Huang and Paradiso (2008) found for
luminance disks in their study. Huang and Paradiso (2008) tested
the responses of V1 neurons to the center of a white disk in a black
background. As they changed the size of the white disk, the onset
of the neurons’ detectable responses became progressively
delayed. They interpreted this effect as ‘brightness’ filling-in.
However, without also testing the neural response to a black disk
in a white background, one cannot be certain whether the delayed
neural responses observed inside the figure was coding brightness
or coding figure enhancement. Furthermore, they do not have an
explanation of why a larger disk of the same brightness will be
represented with neural responses of smaller magnitude.

Our simulation resolves these issues by showing that neural
activities for representing uniform brightness can exhibit a similar
figure-size dependency and the same detectable response onset
sentation in the primary visual cortex. J. Physiol. (2012), http://dx.doi.org/
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Fig. 9. Sum of responses of neurons at all orientations at each position along the horizontal midline to show the temporal evolution of the population responses. The white
and the black disks excited complementary sets of neurons. but the total population responses to the two stimuli were equal. There is a gradual decrease in response away
from the border toward the center in most neurons.

Fig. 10. Neuronal responses to the white disk at 1st, 20th and 50th iterations are separated into the vertically oriented odd-phase (second column) and even-phase (third
column) neurons’ responses and the horizontal odd-phase (fourth column) and even-phase (fifth column) neurons’ responses. The response has both positive and negative
components. It is understood that the positive components are carried by the neurons with the receptive field shown, while the negative components are carried by the
neurons with complementary receptive fields, i.e. with 180 phase shift, comparable to on and off-center cells in the retina. It shows that the odd symmetric filters provide the
lion share of response and strong edge responses spread over time away from the initial border responses, while the responses of the even symmetric filters exhibit stronger
responses inside the figure relative to outside the figure in the later part of their responses. These positive even symmetric neurons exhibit an increase in response inside this
bright disk figure, and the negative even symmetric neurons will exhibit an increase in response inside the black figure. Thus, figure enhancement response can be observed
in the even symmetric neurons, while the odd symmetric neurons exhibit edge response spreading that is slightly stronger inside the figure as well.
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delay. Thus, the contextual modulation signals Huang and Paradiso
(2008) observed might indeed be representing brightness filling-in
as in Paradiso and Nakayama (1991) and the contextual
Please cite this article in press as: Yan, X., et al. Neural dynamics of image repre
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modulation signals we observed might be representing color
filling-in. However, our image representation model suggests that
this filling-in phenomenon is not necessarily mediated by a
sentation in the primary visual cortex. J. Physiol. (2012), http://dx.doi.org/
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Fig. 11. The responses of the simulated neuronal population at each spatial location
relative to the contrast border, sum of absolute values of wavelet coefficients of
wavelets of different orientations and phases at each location, show that as the
distance away from the border increases, the response onset increases, and the
magnitude of the responses decreases, as also observed in our single and multi-unit
data.
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‘‘diffusion mechanism’’ advanced by earlier models (Grossberg and
Mingolla, 1985) but simply results from a computational process
for constructing a mental image to explain the retinal input. Be-
cause all the connections and computations are local in this model,
the contextual effect appears to propagate from the border. How-
ever, in such a network, after the first iteration, all the neurons will
experience changes in input and respond simultaneously. That is,
within one synaptic delay time, the membrane potential of all
the neurons will experience some input. Neurons closer to the bor-
der will receive stronger input. Significant or detectable changes
would appear to exhibit a propagation-like effect both in neural
measurement and in psychophysical measurement, but the under-
lying mechanism does not have to be a diffusion mechanism.

9. Figure enhancement and image representation

We next investigated to what extent the model for image repre-
sentation can explain the figure enhancement effects shown in
Fig. 12. Left: The temporal evolution of spatial response profile in response to a white dis
all the neurons to different parts of the image. Top row: Figure size 64 � 64 pixels in diam
wavelength is 10 pixels. Bottom row: Figure size 128 � 128 pixels in diameter in a 384 �
more efficient in the framework of overcomplete representation, and remains sparse in th
might contribute their spikes in the representation in the later part of the response.
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Figs. 1–3. We plotted the sum of all the cells’ responses (i.e. the
absolute values of the responses of all Gabor wavelets) at each
location along the midline cross-section of the image containing
the white figure. Absolute values are taken because Gabor wavelets
can have positive and negative responses, in reality each wavelet is
represented by two cortical neurons, similar to ON and OFF-center
retinal ganglion cell representing the negative and positive of a
Laplacian of Gaussian filter. Fig. 12 shows the temporal evolution
of the spatial response profile of the neuronal population along
the cross-section. It shows significant boundary response and an
increase of the responses at the interior of the figure over time,
as observed neurophysiologically. One distinction between the
simulation and experimental result is the gradual spread of bound-
ary responses outside the figure, just as Cornelissen et al. (2006)
observed in their fMRI study. Fig. 12 (right column) plotted the
temporal evolution of all cells at the border, at the figure center
and background equidistant to the border. We observed a strong
figure enhancement effect at the population level. This is compara-
ble to the results in Fig. 3.

The global population response, as measurable by fMRI, is dif-
ferent from single unit recording results in one important aspect.
Lamme (1995) showed that the figure enhancement response
exhibits a sharp discontinuity across the figure-ground boundary
(see Figs. 1 and 2, also Lee et al. (1998)). In single-unit recordings,
we considered neurons of one orientation at a time, this sharp dis-
continuity in figure-ground enhancement can be produced in the
vertical and horizontal neurons. It is not difficult to see how the
vertical and horizontal simple cells’ responses shown in Fig. 10
can be used to generate complex cells’ responses that will have
boundary responses as well as a sharp discontinuity between the
responses inside and outside the figure.

Thus, we demonstrated that many aspects of the contextual
figure-ground modulation effects observed for uniform chromatic
figures at the population level such as figure size dependency,
border-distance dependency, delay onset, enhancement inside
the figure relative to the background can be observed in this model,
at least qualitatively, without evoking additional processes and
representations. The figure-ground enhancement effect was first
k in a black blackground. The response profile is the combined absolute responses of
eter in an image of 192 � 192. Boundary at pixel location 64 and 128. Receptive field
384 image. Boundary at pixel location 128 and 256. Right: The later representation is
e sense of its response distribution remaining Laplacian, even though more neurons

sentation in the primary visual cortex. J. Physiol. (2012), http://dx.doi.org/
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Fig. 14. The sparseness of the resulting neural response distribution to the white
disk does not seem to significantly change as with an increase in the weight k of the
sparseness constraint.
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observed in texture stimuli (Lamme, 1995; Zipser et al., 1996; Lee
et al., 1998) and is likely related to other well-known contextual
modulation effects such as the classical surround suppression ef-
fect observed in sinewave grating (e.g. Maffei and Fiorentini,
1976; Nelson and Frost, 1978; Knierim and van Essen, 1992; De
Weerd et al., 1995) as both of these phenomena exhibit a decrease
in neural response with the addition of similar features in the sur-
round. Even though the connectivity required in the image repre-
sentation network is very local, only between neurons with
overlapping receptive fields, signals can still propagate long-range
far from the source over time, as shown in Fig. 9. It would be inter-
esting to explore what other contextual modulation effects can
also be accounted for in terms of the image representation model.

10. Redundancy reduction and sparse code

A puzzle concerning the notion of redundancy reduction in our
model is that the model’s neurons initially give a sparse response
to the uniform disk, but as the model iterates, more neurons be-
come active as more Gabor filters are required to represent a uni-
form field. This is a necessary consequence of the image
representation framework when using Gabor filters, and it could
be a good model for neural responses, but is confounded by the no-
tion of redundancy reduction when the sparse code is shifting to a
distributed code. Redundancy reduction in this model is not en-
tirely equivalent to a sparse code. The Gabor wavelet codes we
used, as well as the representation of simple cells in V1, are highly
overcomplete (Lee, 1996). This results in the same image being
represented multiple times redundantly. The lateral inhibition be-
tween neurons representing the same information helps remove
this redundancy. Individual Gabor filters are sparse such that they
efficiently capture and represent an independent cause (e.g. an
edge) in natural scene images and their responses follow a Lapla-
cian distribution. This response profile implied that Gabor filters
will respond to some specific features in natural scenes, while
ignoring most others. However, this does not mean that the feed-
forward neural responses are not redundant. It has been observed
that the overcomplete nature of the cells requires recurrent or hor-
izontal connections to remove the redundancy (Daugman, 1988;
Lee, 1996; Rozell et al., 2008). Thus, even though more cells are
being recruited to represent the uniform disk region, the overall re-
sponses of the entire population of neurons, particularly those at
the contrast border, actually decrease over time, as shown in
Fig. 12. Fig. 13 shows that the response distribution at the 50th
iteration of the model for the white disk image (as in Fig. 10),
and for a natural image, both showed significant reduction of the
population response. The later responses remain sparse in the
sense of remaining a Laplacian distribution.

We investigated whether adding an additional sparse constraint
such as klog(1 + a2) to the energy function, as in the works of
Fig. 13. Left. Distribution of the activity of all neurons in the model in response to the whi
the activity of all neurons in the model in response to a natural image (Lena) at the 1st a
later representation is more efficient in the framework of overcomplete representation, an
though more neurons might contribute their spikes in the representation in the later pa
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Rozell, would make the distribution more sparse. Fig. 14 shows
the response distributions retain similar Laplacian profiles with an
increased assertion of the sparseness constraint (i.e. increase in k).
Thus, the significant attenuation of most of the responses and exag-
geration of a few responses that characterize the sparse code, as ob-
served in Vinje and Gallant (2000), likely require additional neural
mechanism such as the well-known expansive nonlinearity in V1
neurons. These effects are not captured in our linear-filter simple
cell model. A more realistic network model with such nonlinearity
could potentially reproduce the sparse code behaviors in V1
neurons as observed by Vinje and Gallant (2000). Nevertheless, it
is interesting that this simplistic model of V1 circuit can already
capture many aspects of the contextual modulation effects.
11. Conclusion: contextual modulation and image
representation

In this paper, we have advanced the ‘radical idea’ that image
representation furnishes a model for explaining and reconciling a
te disk in a black background at the 1st and the 50th iterations. Right. Distribution of
nd the 50th iterations. The distributions of responses contracted in both cases. The
d remains sparse in the sense of its response distribution remaining Laplacian, even
rt of the response.
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number of neurophysiological observations on contextual modula-
tion. The image representation assumption has been central to the
efficient sparse coding account of the development of simple cell
receptive fields (Olshausen and Field, 1996, Lewicki and Olshausen,
1999), and the predictive coding model (Rao and Ballard, 1999) and
the high-resolution buffer theory of V1 of Lee and Mumford (2003)
for visual reasoning in the hierarchical visual cortex. The mathe-
matical investigation of visual hallucination patterns (Ermentrout
and Cowan, 1979, Bressloff et al., 2001) also presupposes an iso-
morphic representation of perception in V1. Because of the over-
complete nature of simple cells representation, recurrent circuits
through either V1-LGN feedback, normalization, or horizontal con-
nections (Daugman, 1988; Lee, 1996; Rozell et al., 2008) would be
required to reduce redundancy. Although this hypothesis has re-
ceived some attention recently in the theoretical neuroscience
community (Rozell et al., 2008; Druckmann and Chklovskii,
2010), its implication has not been seriously considered in the
physiological community.

To investigate this hypothesis, we performed a series of exper-
iments to study how color images are processed and represented
by V1 neurons, particularly in the context of figure-ground effects.
We found neural responses to be strong at the chromatic contrast
border but also significant inside the uniform color surface. The re-
sponses of the cells are stronger inside the color surface of a figure
than in the background of the same color. This ‘figure enhancement
effect’ for color is analogous to what had been observed in Lamme
(1995) for texture figures, except the enhancement ratio is much
stronger (Fig. 5). This response inside the figure is progressively
weaker when the neuron’s receptive field is analyzing locations
further away from the chromatic contrast border or as the size of
the figure increases. This resembles the classical surround suppres-
sion effect observed in sinewave grating experiments. Thus, our
data suggest that surround suppression can be observed in the col-
or domain. We found simulation with the image representation
model can actually account for many aspects of these figure ground
enhancement effect, i.e. a stronger response inside the figure ver-
sus outside the figure, a progressive decrease in response and in
figure-enhancement away from the border and even sharp
enhancement discontinuity for some cells (Lamme, 1995; Zipser
et al., 1996; Lee et al., 1998).

The simulation results also dispel a misconception on how neu-
rons need to respond in order to represent uniform surface bright-
ness and color in a region. Cornelissen et al.’s (2006) fMRI study
showed that voxel activation for a uniform figure emphasizes the
boundary but has a larger spatial spread from the borders not pre-
dicted by simple filter responses (see Fig. 10). The activation profile
demonstrated a smearing of activation that was much wider that
could be predicted based on edge filter response. The lack of uni-
formity in response within a region of uniform brightness was ci-
ted by Cornelissen et al. (2006) as evidence against the notion of
isomorphic representation of visual imagery in the brain. The sim-
ulation of the image representation model replicated their experi-
mental findings (Fig. 12) but argued against their conclusion: the
spatial profile in neural activation that they observed is consistent
with the network’s responses for representing a uniform region in
an overcomplete representation scheme, and is not inconsistent
with the notion of isomorphic representation.

Huang and Paradiso (2008) observed a similar progressive de-
cay in response magnitude and delay in response onset as a func-
tion of figure size for a brightness figure, when the receptive field
of neuron is situated at the center of a uniform white disk. How-
ever, they only tested the response of neurons to white disk in a
black background but not a black disk in a white background,
and as such they cannot distinguish whether the response ob-
served was encoding figure saliency or figure brightness. Further-
more, they provided no explanation as to why the response
Please cite this article in press as: Yan, X., et al. Neural dynamics of image repre
10.1016/j.jphysparis.2012.08.006
decreases with the increase in figure size even though the bright-
ness percept remains the same regardless of figure size. The simu-
lation of our model appears to support their claim that the
responses are for encoding brightness, but additionally provides
an explanation.

An important contribution of this paper is to offer a new inter-
pretation regarding brightness filling-in, in terms of image repre-
sentation. The temporal evolution of synthesized images in Fig. 9
exhibits the same perceptual phenomenon observed in Paradiso
and Nakayama’s (1991) psychophysical study on brightness
filling-in. All other existing models for explaining this filling-in
phenomenon assumes there is a brightness channel in V1 in which
the brightness or darkness signals propagate by a diffusion mech-
anism (Gerrits and Vendrik, 1970; Grossberg and Mingolla, 1985;
Arrington, 1994). Our simulation shows this apparent ‘diffusion ef-
fect’ does not have to be mediated by a diffusion mechanism, but is
simply the consequence of an unfolding gradient descent computa-
tion for removing redundancy for image representation. In image
representation computation, the response onset of all neurons
are simultaneous, albeit some more significantly than others, and
that statistically detectable responses might appear to have a pro-
gressive onset delay. While we found the detectable response on-
set time increased with figure size in our physiological
experiments, the lack of strong evidence for a delay in 30% or
100% peak response time for figures of different sizes suggests that
this underlying mechanism for generating the progressive detect-
able response onset time might not be a real propagation by diffu-
sion, but only an apparent propagation of responses as the
computation unfolds. The fact that local interaction can mediate
global contextual effect in both the model suggests that Paradiso
and Nakayama’s (1991) psychophysical result can be interpreted
as an indirect evidence in support of an isomorphic representation
of images in the visual cortex, rather than a reflection of some kind
of diffusion mechanism.

However, data provided by von der Heydt et al.’s (2005) study
on color filling-in in the Troxler illulsion remains a serious chal-
lenge to the isomorphic representation theory. Von der Heydt
and colleagues did not find a corresponding change in neural activ-
ities of ‘surface’ neurons when the monkeys started to report see-
ing the filling-in. That is, a neuron with red preference continued to
respond well to the red input receptive field stimulus, even though
the monkey was presumably perceiving green because of the Trox-
ler illusion. They argued that V1, V2 and V4 neurons reflected only
the bottom-up input, but not the color percept. But they did see a
decrease in responses of the border neurons looking at the chro-
matic borders that were disappearing when filling-in perception
was reported. Could it be that the neurons we studied in our exper-
iments were more similar to their ‘border’ neurons than to their
‘surface’ neurons, as our neurons responded very strongly to the
chromatic border and only modestly to the background color sur-
face (Fig. 8). Our simulation shows that surface and boundary need
not be represented by two distinct sets of neurons, and that uni-
form surface color can be represented by border sensitive neurons,
consistent with our physiological observation. However, further
experiments and analysis are required to test whether these border
cells looking at the color surface would exhibit filling-in behaviors
inside the surface in the Troxler illusion experiment.

In earlier studies, we have found that the enhanced responses
inside the figure reflects perceptual saliency (Lee et al., 2002), as
this signal is proportional to the monkeys’ reaction speeds and
accuracy in target detection. Here, the simulation seems to suggest
that enhancement inside the figure could emerge directly from im-
age representation computation without the need of an explicit
saliency computation. How can these two views be reconciled?
One can argue that the figure enhancement effect could emerge
as a by-product of the computation for representing images, with
sentation in the primary visual cortex. J. Physiol. (2012), http://dx.doi.org/
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smaller areas characterized by stronger neural responses, which
could be treated by the downstream neurons as a saliency signal.
This would be considered a kind of bottom-up attention signal,
as distinguished from top-down attentional modulation (Connor
et al., 2004; Luck et al., 1997).

On the other hand, image representation seems to be a rela-
tively trivial and boring task from the computer vision perspective.
V1, endowed with almost 20% of the visual cortical real-estate in
the brain, likely engages in a variety of high-resolution visual com-
putation. From the perspective of visual cortex performing infer-
ence using a generative model, V1 can serve a unique role of
representing detailed mental images interpreted based on the ret-
inal image in computation that involves recurrent interaction with
many visual areas along the hierarchy, as suggested by Lee and
Mumford’s (2003) ‘high-resolution buffer’ hypothesis. Therefore,
our image representation model can serve as an infrastructure
for constructing perceptual and mental image. Computing these
perceptual images that we actually see, as in Kanizsa triangle, re-
quires the connections encoding statistical priors from natural
scenes to support perceptual inference. Thus, the circuit of redun-
dancy removal for image representation discussed here is likely
embedded inside a rich set of horizontal circuits for other well
known phenomena observed in V1 (Angelucci and Bressloff,
2006; Bringuier et al., 1999; Fregnac, 2003): contour linking (Li
et al., 2008; Gilbert and Sigman, 2007; McManus et al., 2011) sur-
face interpolation (Samonds et al., 2009), disparity filling-in (Sa-
monds et al., 2012), surround suppression, pop-out and saliency
computation (e.g. Knierim and van Essen, 1992; Lee et al., 2002).
Understanding how multiple functional horizontal and recurrent
feedback circuits can coexist and work together with the circuit
of image representation is a major challenge for future theoretical
and experimental research.
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