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Abstract

We applied system identification techniques to characterize the functional proper-
ties of neurons in Macaque V1. Instead of using a pure white noise input, we used as
input a sinewave grating undergoing a pseudo-random walk in phase. Temporal cor-
relation was introduced to the stimulus sequence so that it induced a more natural
perception of a smooth apparent motion. We compared the kernels derived from an
exact orthogonalization method using SVD against those derived from the classical
Wiener kernel method. We found that the kernels from the exact method give a
more accurate prediction of the neural responses to the dynamic stimulus sequence.
We also found that a combination of the first and second order kernel provided a
significantly better prediction of the neural responses than the first order kernel
alone.

Key words: V1; receptive field; Wiener kernel; Volterra series

1 Introduction

White noise methods for analyzing the function of neurons have been em-
ployed by researchers over the past two decades [1-7]. However, when looking
at the in vivo behavior of neurons to more natural stimuli, the use of white
noise methods presents several problems. First, a true Gaussian noise has no
temporal structure, while our neural systems all deal with temporally corre-
lated signals. In other words, it is hard to construct an input signal which is
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white noise yet appears natural. Second, the convergence of an estimate us-
ing white noise input is slow and an in vivo experiment with awake behaving
monkeys only allow a limited amount of data to be collected. In this work, we
attempted to address both of these issues by deriving a method to obtain the
first order and second order temporal response kernel of V1 neurons that can
predict accurately the neurons’ response to this class of stimuli.

2 Methods
2.1 Stimulus Design

Since we are interested in natural stimuli, can we use a stimulus that looks
natural, yet contains a high noise component? We have decided to use a gray-
scale sine wave grating. An example of our stimulus is given in Figure 1. This
stimulus elicits a strong response from neurons in the primary visual cortex,
which we take as evidence that our stimulus is in some sense natural. In each
experimental session, the sine wave grating’s orientation and spatial frequency
was chosen in such a way that the neuron’ response and its modulation by the
grating stimulus would be maximized.
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Fig. 1. (a) Example sine wave grating. The orientation and spatial frequency were
chosen according to the optimal tuning of the cell. The diameter of the stimulus
was 5°. (b) The series of repeated input signals presented to the monkey are shown
as overlaid plots. The input signal used by the kernels is the cosine of the phase, as
opposed to using the phase directly. A phase of zero (cosine of 1) corresponds to the
neuron’s maximum response. This phase alignment is determined empirically from
the data, and computed once for each cell.

The noise component of our stimulus is the phase of the grating, which
undergoes a random walk with step sizes z (¢) drawn from a Gaussian dis-
tribution, z (t) ~ N (0,0). However, our visual system relies on a temporal
correlation in the input in order to form a coherent motion percept. A pure
random walk produces a jittering perception that does not excite the neurons
significantly. In order to induce a perception of coherent motion, we apply a
low pass Butterworth digital filter to a true Gaussian white noise signal. This



removes the high frequency components of the input signal and creates the
desired temporal correlation.

2.2 Experimental procedure

In each recording sessions, the orientation tuning and the spatial frequency
tuning of the neurons was first determined so that the sinewave grating that
would elicit the maximum modulation and responses was used. The receptive
fields were roughly placed at the center of the grating stimulus. Their center
were typically between 2° and 4° eccentricity away from the fovea. Their size
ranged from 0.5° to 1°.

Each experimental trial began by turning on both a fixation dot and the
randomly moving stimulus simultaneously. The monkey needed to maintain
fixation for 2200 msec at the fixation dot before it received a juice reward.
Both the fixation dot and stimulus were removed from the screen for a fixed
period of time before the next trial began. There were two types of stimulus
presentation, random and repeated. The random trials were ones where the
stimulus motion was different each trial. The repeated trials used one particu-
lar movement sequence drawn from the same sample as the random trials. The
monkey was presented with 10 random sequences followed by 2 repetitions of
one sequence, for a total of 40 times, providing us with neural responses to 400
trials of unique random sequences, and 80 trials of a particular stimulus se-
quence. Kernels estimated using only the random trials were used to estimate
the average post-stimulus time histograms of the repeated stimulus sequence.

2.8 Kernel Estimation

Wiener kernel methods are typically used when both a large amount of data
can be generated and the input to the system is true Gaussian noise. Because
we are interested in the in vivo behavior of visual neurons, we are limited
in the amount of data which can be collected. In addition, our input signal
is correlated in time and thus not true Gaussian white noise. Our method
attempts to recover the temporal kernels from the responses of neurons to
limited amount of non-white noise data. We define the kernels in terms of
Volterra series expansion, and use Least Mean Square regression method to
estimate the coefficients of these terms based on the input signals and the
output responses. By casting the kernel estimation problem into an optimiza-
tion problem, we can correct for the correlations in the input and reduce the
amount of data required.

The results presented here are the first and second order kernels, although
there is no inherent limitation in the method restricting us from estimating
higher order kernels. Our input signal is z (¢) and the cell’s response is y (%).
Our linear system with memory length L is then
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where hg corresponds to the mean firing rate, h, is the first order kernel, and
hz, 7, the second order kernel. We restrict all 7’s to be positive, so we only
consider causal filters. This equation is easily expressed in matrix form as
Y = X H, where time is now indexed by matrix row in Y and X. H contains
the concatenation of the terms

lho by -+ hp hyg by -+ hyp)
And row t of X is similarly

Ha(t—1) - a(t—L) (@t-1) s(t—-1) @t-1) z(t—2)) -
(z(t—L) z(t—L))]

The standard solution for this regression problem is H = (X'X)™" X'Y.
Because of the correlations in our input signal z (¢), though, the matrix (X'X)
is ill conditioned. Instead of directly inverting this matrix, we use the singular
value decomposition USU’ = (X'X) where US™'U’ = (X'X)™" and S is a
diagonal matrix. We include the first n largest dimensions as ranked by their

eigenvalue, where n is chosen so that we account for 99% of the variance in
X.

3 Results

We have collected data for various noise parameters, primarily from simple
cells in V1. Figure 1b shows the cosine of the phase during the 80 test trials.
Figure 2a shows the raster of the response of a neuron to the corresponding
sine wave grating. Figure 2b shows the first and second order kernels estimated
from the input and output of all the non-repeated trials. The kernels have an
enforced latency of 50 msec and a memory length of L = 200 msec. Coefficients
are estimated at 10 msec intervals. The kernels are applied to the input to yield
a predicted response of the neuron for the repeated trials. Figure 3 shows both
the average neural response and the estimated response based on first order
kernels and a combination of the first and second order kernels. As can be
seen, with the second order kernel, the estimate is generally accurate.

In other cells, a more rectified response can be seen. There does appear to be
a common temporal structure for the kernels, a center-surround organization
in time. Figure 6a compares the prediction errors of the Wiener kernel method
and the prediction errors due to the exact kernel method we used. The mean
improvement index of (Wiener MSE - Exact MSE)/(Wiener MSE + Exact
MSE) is equal to 0.305 with standard deviation of 0.172. The Wiener kernels
are approximated using cross-correlation techniques with proper weighting
to adjust for the non-whiteness of the noise signals. Figure 6b compares the
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Fig. 2. (a) The raster of the cell’s response to the repeated sequence, along with the
average PSTH across all trials. (b) The first and second order kernel computed for
the neuron. The second order kernel has been shown as a symmetric surface, when
in reality only the upper triangular coefficients are estimated
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Fig. 3. (a) The average response over the 80 repeated trials is shown, smoothed by
a 10 msec moving average filter. The estimate for this response, using the first and
second kernels presented above, is also shown, showing high correlation. (b) The
first order exact kernel with its prediction of the response.

errors based on prediction using both the first and second order kernels against
the errors based on prediction using only the first order kernels. We have
therefore demonstrated the temporal kernels extracted using the exact method
is able to predict the responses of the neurons, and that the first and second
kernels provides sufficient information to provide a fairly accurate description
of the behaviors of V1 neurons. The exact kernel method, however, has higher
computational complexity than the other approximation methods. Finding



the covariance matrix is an O(N? x M) operation, where N is the number
of ”columns” per record and M is the number of record. Finding the matrix
inverse is an O(N?3) operation. We will run into problems when we start looking
at higher order kernels because N itself is a polynomial of order n*, where n
is the number of time samples and k is the order of the kernel.
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Fig. 4. (a) Population comparison of the performance of Wiener and Exact kernel
estimates, showing the mean square error of the Wiener kernel is greater than that
of the Exact kernel. (b) Population comparison of the performance of Exact first
order kernel against the Exact first+second order kernels.
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