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Abstract

This paper reviews some of the recent neurophysiological studies that explore the variety of visual computations in the early

visual cortex in relation to geometric inference, i.e. the inference of contours, surfaces and shapes. It attempts to draw connections

between ideas from computational vision and findings from awake primate electrophysiology. In the classical feed-forward, modular

view of visual processing, the early visual areas (LGN, V1 and V2) are modules that serve to extract local features, while higher

extrastriate areas are responsible for shape inference and invariant object recognition. However, recent findings in primate early

visual systems reveal that the computations in the early visual cortex are rather complex and dynamic, as well as interactive and

plastic, subject to influence from global context, higher order perceptual inference, task requirement and behavioral experience. The

evidence argues that the early visual cortex does not merely participate in the first stage of visual processing, but is involved in many

levels of visual computation.

� 2003 Elsevier Ltd. All rights reserved.
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1. Introduction

1.1. The interactive nature of perceptual computation

Visual processing may be conceptualized as what

Helmholtz [29] called the unconscious inference, or in

more recent times what is referred to as Bayesian infer-

ence. That is, we must rely on contextual information

and our prior knowledge of the world to make inferences

about the world based on retinal data. Consider the

image patch depicted in Fig. 1a. Seen alone, it is merely a

collection of spots and dots. However, when placed in a
larger scene context (Fig. 1b), the same image patch as-

sumes a more specific and richer meaning. The image

context in this case is also ambiguous, as it will take

unfamiliar viewers a few minutes to perceive the object in

the scene. However, once they are given information as

to what they are supposed to see, i.e. a Dalmatian dog

sniffing the ground near a tree, the image will begin to
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crystallize in their minds. The spots and dots are trans-

formed into the surface markings of the dog’s body.

Furthermore, if the same image is presented again to the

same viewers in the future, they will be able to see the dog
instantly. This terrific example by R.C. James illustrates

the important role of both global context and prior

knowledge play in perceptual inference.

How is visual inference carried out in the brain? Marr

[53] proposed that there is a series of computational

modules, each performing a relatively encapsulated

computational step in image analysis, and that there is a

rough correspondence between these modules and the
areas in the visual cortex (Fig. 2). Subsequent theoretical

and experimental work refined his analysis, sometimes

modifying it, sometimes making it more precise, but still

following the basic ideas. For instance, MT is consid-

ered to be the area where the aperture problem is solved

by integrating local motion signals into a global whole,

while V2 is the area where many Gestalt grouping

operations are performed. A central tenet of this model,
however, is the decomposition of visual processing into

low, intermediate and high levels, and the belief that the

visual cortex could likewise be divided these functional

into these stages. In Marr’s framework, the early visual

area is the site of the primal sketch, where local features
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Fig. 1. (a) An image patch of spots and dots. (b) The image patch

situated in a particular scene, as designed by R.C. James, depicting a

Dalmatian dog sniffing the ground under a tree. This example elegantly

illustrates how the interpretation of some images relies on top-down

knowledge and contextual information.

Fig. 3. An image of an old man and the edge signals produced by

applying the popular Canny edge detector to the image. It illustrates

that bottom-up edge signals are inherently difficult to interpret because

of the ambiguities in local contrast edge information. Segmentation

and recognition are necessarily intertwined, involving the entire hier-

archical circuit of the visual system at the same time.
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are detected and grouped together into symbolic tokens

and contours. Representations of surfaces and object

models were thought to be computed and represented in

the extrastriate cortices such as V4, MT and IT.
Object recognition in complex real world environ-

ments under multiple occlusions, perspectives and

lighting conditions is a very difficult problem. Before

recognizing the object, it is often hard to distinguish it

from the background because on the one hand, its true

contours are confused with local contrast edges caused

by shadows, specularities and surface discontinuities; on

the other hand, the true object edges can be irregular,
faint and partially occluded. To find the boundary of an

object, the first set of contrast edges must be discounted

and the second set must be enhanced or interpolated.

However, an object might need to be segregated from

the background and its boundaries defined before one
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Fig. 2. Marr’s framework of visual processing includes a series of computation

and tokens, then grouping them together to infer surface orientation of ob

matched against stored 3D prototypes. It was thought that there is a rough

areas.
can compute its shape properties and recognize it. These
shape properties will have to be modified if the object is

partly occluded or in shadow. An example is shown in

Fig. 3: although the figure of the old man is extremely

obvious to human perception, application of the popu-

lar edge detector makes mistakes in all of the above. We

believe that this figure cannot be separated from the

background without substantial reconstruction of the

3D structures and an understanding of the illumination
of the scene. Curiously, the most recognizable object in

the scene is the man’s ear, which might, for example,

entrain the process of matching next the face, and finally

the body. In visual computation, it is often necessary to

go back to the high resolution version of the stimuli

because some details that were overlooked as noise in

the first pass could turn out to be crucial in confirming

the identity of an object. In other words, perceptual
inference and object recognition are intertwined: they

cannot progress in a simple bottom-up serial fashion,

but have to take place concurrently and interactively in
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al modules chained together in a hierarchy, first computing local edges

jects. With the 2.5D sketch, the different objects are then parsed and

correspondence between these modules and the different visual cortical



Fig. 4. High-resolution buffers are commonly utilized in computer vi-

sion. (a–c) Image segmentation using Blake and Zisserman’s [6] weak-

membrane model. The model formulates segmentation as an energy

minimization problem. It takes an image (a) and produces two out-

puts: a boundary process map (b) which indicates the location of

boundary, and a surface attribute map (c) which indicates the

smoothed (interpolated) luminance values on the surface of an object.

Both the line process map and the surface attribute map are arrays of

the same resolution as that of the input image and could be considered

as high-resolution buffers. (d–f) Shape from shading computed using

Horn’s [30] classic algorithm, which also formulates the problem in

terms of energy minimization. It takes in an image (d) and computes

the contour of the object. The surface normal at the contour is per-

pendicular to the viewer. The algorithm uses the shape from shading

constraint to propagate the surface orientation estimates in from the

border. The needle map (e) is a high-resolution buffer to represent

surface orientation at each location. Each ‘‘needle’’ is the projection of

a surface normal vector erected on the patch of the surface corre-

sponding to a particular pixel, (f) illustrates the rendering of the vase

model, represented by the needle map, with another light source.
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constant feedforward and feedback loops that involve
the entire hierarchical circuit of the visual system

[18,26,45,55,58,67].

1.2. High-resolution buffer hypothesis

In this context, the early visual area should not be

considered simply as an ‘‘early module’’ that processes

bottom-up information and then passes the results onto
the other extrastriate areas, but rather as an integrated

part of an inference engine that participates in many

levels and varieties of visual computations, provided

that these computations require specificity in spatial

precision and image details that only the early visual

machinery can furnish. This is the essence of the ‘‘high-

resolution buffer hypothesis’’ of V1 that Mumford and

I proposed [44,45,60]. This specific hypothesis predicts
that any level of visual reasoning that requires spatial

precision and high resolution details necessarily engages

the early visual areas.

The motivation of this hypothesis is actually quite

simple. In computer vision, algorithms for perceptual

organization are often operated on arrays of numbers,

and the results are represented in some arrays with

resolution as high, or sometimes even higher, than that
of the input arrays. For example, algorithms for com-

puting contours use high-resolution edge maps to indi-

cate the orientations and locations of the edge segments

[1,6]. Algorithms for computing shape from shading

often utilize a high-resolution needle map in which

surface orientation is represented at each spatial loca-

tion [30,42]. Fig. 4 provides some examples of high-

resolution buffers to illustrate these ideas.
Representations in the early visual areas (LGN, V1

and V2) are precise in both space and feature domains

because their receptive fields are small, arranged in

retinotopic coordinates [31] and decomposed into ori-

ented, wavelet-like local representations that can capture

the full details of the image [16,43]. The size of the

receptive fields of neurons increases dramatically as one

traverses the successive visual areas along the two visual
streams (the dorsal ‘‘where’’ and the ventral ‘‘what’’

streams). For example, the receptive fields in V4 or MT

are about four times larger in diameter than those in V1

at the corresponding eccentricities [21]; and the receptive

fields of neurons in the inferotemporal cortex (IT) tend to

cover a large portion of the visual field [25]. This dra-

matic increase in receptive field size indicates a successive

convergence of visual information that not only is nec-
essary for extracting invariance and abstraction (e.g.

translation, size), but also results in the loss of spatial

resolution and fine details in the higher visual areas.

How can higher order inference that relies on infor-

mation with spatial precision and fine details be

accomplished? One possible strategy is that of coarse

coding, in which the precise information might be
implicitly encoded in the differential responses of higher

cortical neurons in a distributed fashion. However, there

are at least two difficulties associated with this solution.

First, the higher order areas have to implicitly and

redundantly encode the precise information and then

force the burden of decoding onto even higher areas, as

cortical modules do have a tendency to make the rep-
resentation of certain information or attributes explicit.

Second, without an explicit common forum in which all

the expert modules can communicate to each other, a

tremendous amount of wirings would be needed to fully

connect all of the individual modules.

A simpler alternative solution is to exploit the known

reciprocal connection between higher order cortical

areas and the early visual areas (LGN, V1 and V2), so
that the high-resolution computational and representa-

tional machinery in the early visual areas can be har-

nessed to compute and represent higher order

information. In this scenario, LGN, V1 and V2 could

serve as high-resolution buffers for the rest of the visual
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cortex utilizing the reciprocal connections between them
and the extrastriate cortical areas. This perspective dic-

tates that the early visual areas do not merely perform

simple filtering [17] or feature extraction operations [31],

then turning their results over to higher areas for further

processing. Rather, the early visual cortex likely contin-

ues to be involved in all levels of perceptual computa-

tions, insofar as such computations require the utilization

of their intrinsic computational machineries. Computa-
tions concerning geometry such as contours, surfaces and

shapes likely involve V1 and V2 as the precise orienta-

tion and disparity tuning of the neurons in these areas

make them ideal ‘‘geometric computational engines’’.

This hypothesis thus predicts that, when presented with

static images, the early part of V1 neurons’ response

should reflect the results of feedforward filtering oper-

ations, while the later part of their response should re-
flect higher order constructs emerging from the

interactive computation across the visual hierarchy.

This conjecture then suggests that the neural activities

in the early visual cortex could provide a clue for us to

understand the evolution of many visual computational

algorithms. In this paper, we will examine several pieces

of neurophysiological evidence in the early visual cortex

in relation to geometric computations in vision: the
inference of contours, surface, shapes, and forms. The

evidence, some solid and some anecdotal, provides ten-

tative support for the high-resolution buffer hypothesis,

and argues for a much broader functional and a richer

computational role for the early visual cortex.
2. Segmentation and contour completion

Since Hubel and Wiesel’s [31] discovery of the ori-

entation selectivity of V1 neurons, it has been generally

agreed upon that these neurons should play an impor-

tant role in edge detection. Oriented edge filters are

widely utilized in edge detection algorithms [12] as well

as many neural models for contour detection and

completion [27,38,51]. It was further assumed that the
horizontal connections in V1 [24] provide the computa-

tional infrastructure for tracing and completing bound-

ary and curves. Although the receptive field properties

of V1 neurons have been studied extensively using

drifting bars and sinewave gratings, few studies have

examined the neurons from a more abstract visual

processing perspective. Creutzfeldt and Nothdurft [13]

were the first to explore the responses of LGN neurons,
as well as V1 simple and complex cells to different parts

of a complex and natural image. Their conclusion was

that the early visual neurons were reducing complex

stimuli, such as a photograph of a natural environment,

to its contours. Almost 15 years passed before Gallant

et al. [20] studied the neural activity in V1, V2, and V4 in

response to natural scene during free viewing. In 1995,
Lamme [40] examined the response of V1 neurons to
different regions of a texture image and found that V1

responded better when their receptive fields were located

inside the figure than when they were in the background,

providing a clue that V1 neurons might be computing or

reflecting something that might be more abstract in

nature. In this context, we [45,46] carried out a series of

experiments to study the detailed dynamics of V1 neu-

rons in contour processing. Here, I will review some of
our basic findings on the dynamics of early cortical re-

sponses to a variety of contour stimuli.

All the experimental results discussed in this paper

came from single-unit recordings in the primary (V1)

and secondary visual cortex (V2) of awake behaving

rhesus monkeys (Macaca mulatta), and have been previ-

ously documented [45–47]. Recordings were conducted

transdurally with epoxy-coated tungsten electrodes or
glass-coated platinum electrode through a surgically

implanted well overlying the operculum of area V1. The

eye movements of the monkeys were monitored using

implanted scleral search coils [76] and sampled at a rate

of 200 Hz.

The typical paradigm of these experiments was to

present different parts of the stimulus image to the

receptive field of a neuron in successive trials, while
the neuron was being recorded. In each trial, while the

monkey was fixating at a red dot on the screen within a

0.5� · 0.5� window, a full screen sample stimulus was

presented for a period of time. The duration of presen-

tation varied depending on the specific experiments, but

typically around 350–450 ms. Each stimulus was pre-

sented at a randomized series of sampling positions

relative to the cells’ classical receptive fields (CRF) (Fig.
5). The receptive fields of the V1 and V2 neurons we

studied were located at 2–5� away from the fovea. Their

CRFs, as plotted by small oriented bars, were less than

1� (typically around 0.6� in diameter) for V1 neurons,

and less than 1.6� for V2 neurons. Most earlier experi-

ments in the early visual cortex [48,77] used moving

stimuli that drifted across the receptive field of the

neuron. The temporal response of neurons in those
studies was a function of both the dynamics of the

neurons in response to the stimuli, as well as the tem-

poral change of each stimulus. This paradigm of step

presentation of static stimuli allowed us to study the

temporal evolution of the neuronal responses to specific

parts of the stimulus.

2.1. Luminance contour

V1 neurons responded to luminance contrast borders

at 40 ms after stimulus onset (Fig. 6)––that is approxi-

mately the time for the retinal signals to reach V1. When

the orientation of the luminance border was aligned

with the preferred orientation of the cells, the neuronal

response was focused at the luminance border in the



Fig. 5. Stimulus presentation paradigm. (a) Luminance and texture

boundary experiment: the displays illustrate the placement of the

luminance or texture boundary relative to the receptive field in two

testing conditions. In the parallel sampling scheme, the preferred ori-

entation of a cell was parallel to the boundary, and in the orthogonal

sampling scheme, the preferred orientation of the cell was perpendic-

ular to the boundary. Here, the square figure is shown to be displaced

horizontally over successive trials so that the cell’s receptive field was

placed at the center, the boundary and outside of the figure in different

trials. In the parallel sampling scheme, the preferred orientation of

the cell was parallel to the figure boundary it encountered. In the

orthogonal sampling scheme, the preferred orientation of the cell was

orthogonal to the figure boundary it encountered. The sampling line is

defined as the line on which the receptive field of the cell is translated

over trials. The response to the image was sampled with 16 steps across

the image. The step size was 0.5� inside the figure and close to the

boundary. (b) Illusory contour experiment: The spatial relationship

between the fixation spot (black dot), the cell’s receptive field (circle),

and the stimulus figure. The cell’s receptive field was placed in the

middle of the illusory contour at the bottom of the Kanizsa figure, for

a cell selective for horizontal orientation. For cells of other orienta-

tions, the stimuli were rotated accordingly so that the contour was

parallel with the preferred orientation of the cell. The stimulus was

presented in 10 locations 0.25� apart in successive trials relative to the

receptive field so that the illusory contour was collinear with the 10 line

segments as shown in the figure.
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stimuli from the very beginning. When the orientation of

the luminance border was orthogonal to the preferred

orientation of the cells, the cells did not give marked
Fig. 6. Average spatial response profile of a population of 12 vertical comple

almost instantaneous boundary formation (40 ms) and a slight spreading o

resurgent period (80–120 ms after stimulus onset). The response to the BST

spatial locations (see [45] for details).
responses. In this case, the local contrast feature and the
global perceptual border is of the same orientation, we

cannot tell whether the response was due to the local

feature and to the global perceptual structure.

2.2. Texture contour

To dissociate the influence of local features and that

of global perceptual constructs, we study the responses
to the neurons to texture stimuli with borders defined by

orientation contrast (Figs. 7 and 8). The temporal re-

sponse of V1 neurons to these stimuli can be classified

into at least two stages: the initial (40–80 ms after

stimulus onset) response to the local oriented feature

and the later response (80 ms onwards) to the global

perceptual structure. In the examples shown, since the

neurons’ preferred orientation was vertical, the vertical
line segments inside the central vertical strip (4� in

width) (Fig. 7) stimulated the neurons well, producing

an uniformly high response within the vertically texture

strip and a uniformly low response to the horizontally

textured background during the initial stage. This re-

flected the orientation tuning property of the neurons.

Starting at 70 ms, however, the neural responses started

to �contract’ spatially toward the boundary, resulting in
a sharp and sustained response at the texture contrast

border by 80 ms. The responses of vertical neurons to

vertical texture border defined by slanted textures were

more dramatic (Fig. 8): the cells’ initial responses were

relatively mild because both the textures inside and

outside the central texture strip were not of the preferred

orientation of the cells. Remarkably, 80 ms after stim-

ulus onset, the cells started to respond to the texture
boundary, and at a rate higher than the initial response.

This evidence suggests that the later response of the V1

neurons is not merely a habituated version of the initial

response, but is signalling something possibly more
x cells responding to BST (black strip) and WST (white strip), showing

f the border excitation signals inside and outside the strip during the

and the response to the WST was summed together at corresponding



Fig. 7. Spatiotemporal response of a population of V1 neurons to the different parts of the texture strip stimulus, tested with the parallel sampling

scheme, i.e. along a horizontal sampling line. The abscissa is the distance in visual angles from the RF center to the center of the strip. The texture

boundary is located at )2.0� and 2.0� visual angles away from the center. The responses to the texture stimuli were therefore initially uniform within a

region of homogeneous texture based on the orientation tuning of the cells. At 60 ms after stimulus onset, boundary signals started to develop at the

texture boundaries. By 80 ms, the responses at the texture boundaries had become sharpened [45].

Fig. 8. Spatiotemporal response of a population of V1 neurons to the different parts of the slanted texture strip stimulus, tested with the parallel

sampling scheme. The abscissa is the distance in visual angle from the RF center to the center of the strip. The texture boundary is located at )2.0�
and 2.0� visual angles away from the center. The cells’ initial responses were relatively mild because both the textures inside and outside the figure

were not of the cells’ preferred orientation. Remarkably, texture boundary signals that emerged during the resurgent period were stronger than their

initial responses, suggesting that the later responses of the cells were sensitive to the orientation of the global boundary than to the local texture

features [45].
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abstract such as the existence of a global vertical per-

ceptual contour.

Texture contrast enhancement, or boundary sharp-

ening, theoretically could be mediated by lateral inhibi-

tion among neurons through the horizontal collaterals in

the superficial layer of V1, as demonstrated in several

modeling studies [51,72,73]. Lateral inhibition can be

understood in several functional terms, either as a
mechanism for non-maximum suppression [6,12], or a

mechanism for sparse [49,63], or predictive coding

[67,71]. In the context of contour processing, the idea

boils down to selecting the most probable boundary and

suppressing the spurious ones. However, lateral inhibi-

tion and non-maximum suppression is only a part of the
contour processing algorithm; the other part is contour

continuation and completion [1,22,27,51,59,61,78,82].

Most of these approaches for contour completion assume

implicitly or explicitly an association field that integrates

edge information to interpolate a smooth and �elastic’
contour. The existence of such an association field or

local facilitation connections have been derived either

theoretically [78], or from psychophysical experiments
[19] or edge co-occurrence statistics in natural images

[23]. Gilbert and coworkers [35] recently demonstrated

that the response of a neuron to a bar was enhanced when

another bar was placed in a longitudinal direction in the

surround––an enhancement pattern that is consistent

with the facilitatory component of the association field.



Fig. 9. Selected stimuli used in the illusory contour experiment. (a)

Kanizsa square with illusory visual contour, made up of 4 corner discs

(pac-men). (b) Amodal contour. The illusory contour was interrupted

by intersecting lines. It can be perceived as a gray square in a black

background seen through four holes; the contour is amodal as it exists

only cognitively but not visually. (c) Square with line contours. (d)

Square with contrast borders. (e) Square with contrast borders plus

occlusion. (f–i) Various configurations of the rotated corners.
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2.3. Illusory contour

To establish that V1 participates in contour contin-

uation and completion, we [46] tested whether V1 and

V2 neurons are sensitive to the illusory contour of

the Kanizsa square (Fig. 9). The classic experiment by

von der Hedyt et al. [77] demonstrated that the neural

correlate of subjective contour can be found in V2.
However, they did not see significant signals at V1. This,

in some way, was in direct contradiction with the high-

resolution buffer hypothesis and has been taken by

many as evidence that visual computation is primarily a

feedforward process. However, the stimulus in the ori-

ginal experiment was an illusory bar sweeping across the

receptive field. This might have provided insufficient

reason for the feedback signals to go back to V1. We
reasoned that the perception of a sharp subjective con-

tour might necessitate the participation of V1. In a

procedure similar to the texture experiment, we tested

V1 and V2 neurons’ responses to illusory contour, and

various types of real contours and controls, when they

were placed at different locations relative to the receptive

fields of the cells (Fig. 5b). The static presentation of the
stimulus allowed us to monitor the temporal dynamics
of the response.

With additional necessary manipulations designed to

capture the monkey’s attention to the illusory figures

(see [46] for details), we found that the neural correlate

of an illusory contour emerged in V1 at precisely the

location it was supposed to be, as determined by the

cell’s responses to a line or a luminance contrast

boundary (Fig. 10a). The response to the illusory con-
tour was delayed relative to the response to the real

contours by 55 ms (Fig. 10b), emerging at about 100 ms

after stimulus onset. The response to the illusory con-

tour was significantly greater than the response to the

controls, including the stimuli in which the illusory

contour was interrupted by lines, or in which the pac-

men were rotated (Fig. 10c). At the population level, we

found that sensitivity to illusory contour emerged at 65
ms in V2, and 100 ms at the superficial layer of V1 (Fig.

10d and e). One possible interpretation is that V2 could

be detecting the existence of an illusory contour by

integrating information from a more global spatial

context, and then feeding the information back to V1 to

facilitate contour completion. Since V2 receptive fields

are larger, and their feedback to V1 is more spatially

diffused [56], it seems rather improbable that V2 could
actually synthesize a precise contour and then feed it

back to V1. A more likely scenario, as shown in Fig. 11,

is that an oriented V2 neuron, once activated by the

illusory contour, feeds back to excite the V1 neurons of

the appropriate orientation under its spatial coverage,

i.e. in a spatially non-specific, but feature-specific,

manner. This effectively provides a top-down prior that

allow the V1 circuitry to integrate with the bottom-up
cues to construct the precise and spatially sharp con-

tour.
3. Saliency and surface coloring

A second class of computational phenomena that has

been observed in the early visual cortex is related to the
coloring of salient objects in a visual scene. This is one

of the visual routines proposed by Ullman [82]. Coloring

of an object serves several functions: it facilitates the

computation of shape; and it attracts spatial attention to

the salient object. The �intensity’ of the color is pro-

portional to the perceptual saliency of the object.

The computation of object saliency in a visual scene is

important for directing the spotlight of attention and for
guiding eye movements during scene analysis. Earlier

single-unit studies in awake and anesthetized monkeys

have implicated the primary visual cortex in the medi-

ation of bottom-up pop-out saliency computation of

oriented bars and contrast gratings. Consider the stim-

uli in Fig. 12: the vertical bar appears to be perceptu-

ally more salient or pop-out when it is surrounded by
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Fig. 10. (a) The spatial profile of a V1 neuron’s response to the contours of both real and illusory squares, in a temporal window 100–150 ms after

stimulus onset. The real or illusory square was placed at different spatial locations relative to the receptive field of the cell. This cell responded to the

illusory contour when it was at precisely the same location where a real contour evoked the maximal response from the neuron. This cell also re-

sponded significantly better to the illusory contour than to the amodal contour (T -test, p < 0:003) and did not respond much when the pac-men were

rotated. (b) Temporal evolution of this cell’s response to the illusory contour, the amodal contour and the various rotated corner disc controls at the

location where the real contour elicited the maximum response. The response to the illusory contour emerged at about 100 ms after the illusory

square appeared. The cell responded slightly to the amodal contour and did not respond to any of the rotated corner discs. (c) The cell’s response to

the illusory contour compared to its response to the real contours of a line square, or a white square. The onset of the response to the real contours

was at 45 ms, about 55 ms before the illusory contour response. (d) Population averaged temporal response of 50 V1 neurons in the superficial layer

to the real and illusory contours. (e) Response to the illusory contour of the 50 V1 neurons compared to the response to the controls. (f) Histogram of

the illusory contour modulation ratio, which is computed by ðRi � RaÞ=ðRi þ RaÞ, where Ri is the response to the illusory contour, and Ra is the

response to the �amodal contour’ control. (g–i) Same as (c–e) but for 39 V2 neurons in the superficial layer.
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horizontal bars than when it is surrounded by vertical

bars. What is the neural correlate of this enhanced

perceptual saliency? Knierim and Van Essen [37] found

that a certain percentage of the V1 neurons responded
better to the pop-out condition than to the uniform

condition even though the CRF of the neuron was see-

ing exactly the same stimulus, indicating a sensitivity of
the individual neurons’ response to the global context of

the surround. This sensitivity to surround context was

considered a neural correlate of perceptual pop-out.

Analogous perceptual pop-out effect has also been ob-
served due to orientation contrast in sine wave gratings

(Fig. 12b) in various cortical areas [7,24,48,50,52,54].

These phenomena have been observed in both anesthe-
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Fig. 11. A scenario of the interactive computation between V1 and V2.

 Uniform Popout

Fig. 12. The phenomenon of pop-out. An oriented bar is more salient

when it is surrounded by bars of the orthogonal orientation than when

it is surrounded by bars of the same orientation. This increase in sal-

iency allows the bar to pop out––the time required to detect it is

independent of the number of distractors.

Fig. 13. (a) Convex and concave shapes defined by shading segregate

instantly into two groups. (b) Patterns of different contrast polarities

did not segregate as readily.
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tized and awake animals [62], though there was some

evidence that awareness or consciousness, and intactness
of the extrastriate visual cortex might be necessary for

the texture contrast figure-ground effect in V1 [41,75].

Theoretically speaking, since all these stimuli are con-

structed from oriented line segments, the computation

of pop-out could be mediated purely by lateral inhibi-

tion using the horizontal collaterals in the primary visual

cortex without necessarily involving the recurrent feed-

back [32,51,72,73]. In these texture and bar studies,
perceptual saliency and orientation contrast of the

stimuli were correlated, making it difficult to assess the

contributions from feedforward/local mechanisms and

that from intercortical feedback. In order to separate

the contribution of bottom-up and top-down processes

to neural phenomena in the early visual areas, we

[47] examined the shape from shading pop-out phe-

nomena.
3.1. Shape from shading

Shape from shading stimuli have been used to dem-

onstrate that parallel pop-out can occur with ‘‘high

level’’ perceptual constructs [8,66,74]. It has long been a

mystery as to why shape from shading stimuli, which

presumably require processing by higher order percep-

tual areas, segregates readily into groups (Fig. 13a) and

pop out �preattentively’ as if they were textons (Fig.
14a). Ramachandran [66] demonstrated that shape from

shading stimuli pop out more readily than two-dimen-

sional contrast patterns (Figs. 13b and 14b). The degree

of perceptual pop-out saliency depends on both the 3D

shape as well as the lighting direction. LA (lighting from

above) and LB (lighting from below) stimuli in Fig. 13b

pop out readily because we have this built-in bias of

assuming lighting come from above. The perception of
the convexity and concavity of elements are immediate.



Fig. 14. (a) Stimulus set for the shape from shading pop-out experiment. A typical stimulus display was composed of 10· 10 stimulus elements. Each
element was 1� visual angle in diameter. The diameter of the CRF of a typical cell at the eccentricities tested ranged from 0.4� to 0.8� visual angle.
Displayed is the LA (lighting from above) oddball condition, with the LA oddball placed on top of the cell’s receptive field, indicated by the open

circle. The solid dot indicates the fixation spot. (b) There are six stimulus sets, each defined by the receptive field element, i.e. LA (lighting from

above), LB (lighting from below), LL (lighting from left), LR (lighting from right), WA (white above), and WB (white below). Each stimulus set had

four conditions: singleton, oddball, uniform and hole. Displayed are the iconic diagrams of all the conditions for the LA set and the LB set, as well as

the oddball conditions for the other four sets. The center element in the iconic diagram covered the receptive field of the neuron in the experiment.

The surround stimulus elements were placed outside the RF of the neuron. The comparison was between the oddball condition and the uniform

condition, while the singleton and the hole conditions were controls. The singletons measured the neuronal response to direct stimulation of the RF

alone, and the holes measured the response to direct stimulation of the extra-RF surround only.
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LL and LR (lighting from left, right) stimuli pop out to

a less degree because the interpretation of lighting

direction, and hence the 3D shape of the elements, is
ambiguous. WA and WB (white above, below) stimuli,

even though they are stronger in luminance contrast, are

much weaker in perceptual saliency. The computation of

pop-out for the shape from shading stimuli likely in-

volves both the parallel machinery in the early visual

area and extrastriate areas for inferring 3D shapes. The

stimuli WA and WB thus are good control stimuli for

dissociating bottom-up contrast saliency and top-down
perceptual saliency.

We examined whether V1 and V2 neurons responded

differently to the oddball condition and the uniform

condition when the receptive field of the tested neuron

was covered by the same stimulus element. Six types of

stimuli (LA, LB, LL, LR, WA and WB) were tested,

each with the four types of conditions (singleton, odd-

ball, uniform and hole). A singleton stimulus and a hole
stimulus were used as controls for each stimulus types.

The singleton stimuli measured the neuronal response to

direct stimulation of the RF alone, without any sur-

round stimulus, while the hole stimuli measured the re-

sponse to direct stimulation of only the extra-RF

surround. In each trial, one of the conditions was dis-

played on the screen for 350 ms while the monkey fix-

ated at a red fixation dot (shown as a black dot in Fig.
14a). The monkeys were performing a fixation task

during all the neuronal recording sessions.

Before the monkeys had to utilize the stimuli in their

behavior, V2 neurons, but not V1 neurons, were found
to be sensitive to shape from shading pop-out [47], as

shown in Fig. 15a–f. After we trained the monkeys to

perform an odd-ball detection task, in which the mon-
key had to make a saccade to the oddball stimulus

appearing at one of the four random locations, V1 be-

gan to exhibit pop-out sensitivity to the shape from

shading pop-out stimulus but not to the WA and WB

contrast stimuli in a fixation task (Fig. 15g–i). In both

stages (before and after behavioral training), V1 and V2

neurons were not sensitive to the difference in the sur-

round in the oddballs and the uniform conditions for the
WA or the WB stimuli, i.e. these stimuli did not elicited

a pop-out response in the early visual cortex.

When we changed the statistics of the stimuli in the

environment, in this case the presentation frequency of

different types of oddball targets, the behavioral perfor-

mance of the monkeys in detecting the oddball stimuli

adapted accordingly: a target that appeared more fre-

quently was detected with shorter reaction time and high
accuracy, reflecting a change in the perceptual saliency of

specific target. A corresponding change in neural pop-

out responses was also observed in V1 and V2 neurons,

suggesting that perceptual saliency is not static, but dy-

namic and malleable, contingent on the animals’ expe-

rience and behavioral relevance of the stimuli. Given that

the observed effect was not restricted to the retinotopic

location of the target during training, plasticity compo-
nent of the observed effect was likely distributed over

multiple memory and perceptual areas or in the feed-

forward/feedback connections between cortical areas,

although the changes in V1 circuitry were also possible.
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Fig. 15. (a,b) Temporal evolution of the normalized population average response of 30 V1 units from monkey A to the LA set (a) and the WA set (b)

in a stage prior the monkey had utilized the stimuli in its behavior. Each unit’s response was first smoothed by a running average within a 15 ms

window, then averaged across the population. A very small difference (pop-out response) was observed between the population average response to

the oddball condition and that to the uniform condition in the LA set. No pop-out response was observed in the WA set. (c) Mean pop-out

modulation ratios of 30 units for all six stimulus sets in this �preattentive’ stage. Pop-out enhancements were significant for LA and LB (P ¼ 0:011,

0.007), but not for the other stimuli. The error bars were the standard errors of the means. (d–f) Data are from 15 V2 units in the preattentive stage

showing more significant shape from shading pop-out in V2. (g–i) Data from 45 V1 units after the monkeys have utilized the stimuli in their

experience. Pop-out enhancement increased and became highly significant for stimuli LA, LB, LL, and LR (p ¼ 10�6, 10�6, 0.0045, 10�4), but not for

WA and WB. A second monkey’s data were similar.
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When the behavioral measurements during the vari-

ous training stages were regressed against the neural

pop-out responses obtained in the adjacent recording

stages, the two were found to be highly correlated (Fig.

16): a stronger pop-out response (the enhancement of

response to the oddball condition relative to the uniform

condition) was matched to a shorter reaction time and
higher accuracy in detection performance. This indicates

that the neural pop-out signals were correlates of the
subjective perceptual pop-out saliency. The observation

that pop-out due to 3D shapes emerged at the level of

V1 and V2 suggests that the computation of perceptual

saliency involves both bottom-up processing in V1 and

the top-down spatial attentional modulation from the

dorsal stream, as well as top-down 3D shape inference

feedback from the ventral stream areas [34,65].
What is the role of V1 in this computation? Could it

simply be reflecting passively the attentional effect
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Fig. 16. Correlation between performance and neural response. In the shape from shading experiment, we trained the monkeys to do oddball

detection task with stimuli with different presentation frequencies. The monkeys’ behaviors and neural responses adapted after each stage of training.

Here, behavior performance measurements (percent correct and reaction time) in three different training stages: 2 (red), 6 (green), and 8 (blue) were

paired with neural pop-out modulation data in three recording stages: 3 (red), 5 (green), and 7 (blue) (see [47] for details). Each pair of stages

produced six data points (corresponding to the six stimulus types). Eighteen points are shown in each graph relating a behavioral measure with neural

pop-out modulation. Reaction time and percent correct was regressed on the pop-out modulation independently. A linear regression line, their

equations and statistical significance are shown in each plot. An out-lier, which was over 2.5 standard deviations away from the regression line, was

discarded in each graph (the red dot with blue outline). The out-lier could have arisen from interference due to other top-down influences. Both

accuracy and reaction time were correlated with the neural pop-out modulation. (For interpretation of the references in colour in this figure legend,

the reader is referred to the web version of this article.)
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higher up in the extrastriate cortex? Granted the signal

we observed was related to perceptual saliency, it is

computationally advantageous to distribute this signal

over the surface of the salient object, i.e. making the
whole object pop out from the background. We [45] had

suggested earlier that this may be related to Ullman’s

coloring operation, which might require the spatially

precise topological map in V1.

3.2. Texture figure saliency

Evidence of surface coloring can be traced back
Lamme’s [40] figure-ground effect. By examining the

neurons’ responses to different parts of the texture

stimuli, he found that V1 neurons’ responses were en-

hanced when their receptive fields were placed inside a

texture-defined figure relative to when they were placed

in a textured background, and that this enhancement

was uniform within the spatial extent of the figure.

When we [45] repeated his experiment (Fig. 17), we
found that the magnitude and spatial extent of figure

enhancement signal was smaller than what Lamme had

reported earlier (see also [70,80]), and that the interior

enhancement effect was superimposed by a very strong

texture boundary signal particularly when the preferred

orientation of the neurons was aligned with the orien-

tation of the texture boundary (Fig. 17a and c). Nev-

ertheless, there was indeed a general enhancement of the
neural response within the figure against the back-

ground (Fig. 17d). Although surround inhibition was

known for 20 years, the discontinuity in the enhance-
ment effect between figure and ground is new and

important because it suggested a form of object-based

attention––an effect that has been associated with an

improvement in people’s ability in discriminating fea-
tures on the same surface of an object (even in partial

occlusion) than across the surfaces of different objects

[3,64]. Apparently, it is easier to compare features

within the same layer or within a similarly colored

surface.

While the illusory contour response of V2 neurons

preceded that of V1 neurons by 35 ms, the shape from

shading pop-out responses seemed to emerge in both
areas at roughly the same time, at about 100 ms for the

LA and LB stimuli. This time framework of 100–130 ms

is close to that of target selection signals observed in the

frontal eye field during a visual search task [5], sug-

gesting that the computation and representation of

perceptual saliency of objects in a visual scene might be

distributed across multiple cortical areas and its com-

putation might be inherently interactive and concurrent
in nature. While saliency maps might be distributed

across multiple cortical areas, the early visual area

(LGN, V1 and V2) seems to provide the highest reso-

lution saliency map for spatial localization and coloring

of object surface.
4. Shapes, forms and symmetry

Once an object’s boundary is delineated and its sur-

face colored, it is possible then to compute the shape



Fig. 17. Saliency coloring of the surface of an object: V1 neurons’ responses were found to be enhanced inside the figure relative to outside the figure.

(a) and (b) show figures defined by texture contrast. (c) shows the population averaged response of neurons in the parallel sampling scheme with the

response to (a) and the response to (b) summed at each corresponding spatial location. (d) shows the population averaged response of neurons in the

orthogonal sampling scheme. In the parallel sampling scheme, we found a large persistent texture edge response, which was absent in the orthogonal

sampling scheme. This suggests that the cells were sensitive to the orientation of the texture boundaries. The response inside the figure showed an

enhancement (about 15%) for both sampling schemes. The response inside the figure in the orthogonal sampling scheme appeared to be relatively flat,

similar to Lamme’s [40] original finding (see [45] for details).
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and form of a segmented surface. Could the early visual

cortex also play a role in the representation of local 3D

surface shapes as well as the computation of the global

shape (form) of an object’s outline?

4.1. Surface shape primitives

An interesting observation in the shape from shading

experiment [47] was that while V1 neurons responded

much better to the WA and WB stimuli over the shape

from shading stimuli in the initial (feedforward) phase

(40–100 ms post-stimulus onset) of their response, V2

neurons responded equally well to both types of stimuli

in their initial (feedforward) responses even though the

shape from shading stimuli are much weaker in contrast.
This evidence, together with the fact that the shape from

shading pop-out was observed in V2 preattentively, but

not in V1, led us to think that V2 might be the first

cortical area that has the infrastructure for explicitly

representing 3D surface shapes, allowing them to com-

pute shape from shading pop-out. These ideas are con-

sistent with the recent evidence provided by the studies

of Von der Heydt and his colleagues that V2 neurons are
sensitive to convex and concave stereo shapes [65] and
that V2 neurons are sensitive to border ownership

(hence figure-ground) [79]. Taken together, it is rea-

sonable to believe that V2 neurons might indeed furnish

the infrastructure for the explicit representation of local

3D surface shape, with each V2 neuron’s receptive field

serving to encode a local patch of differential geometric

surface, and that a combination of these elementary
surface shapes can then represent any arbitrary surface

shapes locally.

4.2. Axis of symmetry

A colored surface could also support another com-

putation: the inference of the boundary shape or the

form of an object. Given V1’s circuitry is ideal for curve
tracing, it is possible that it might also participate in the

tracing of the axis of symmetry. Tracing the axis of

symmetry of shape is a popular approach in computer

vision. Biological bodies with flexible joints can change

drastically with motion and changes in view point. Blum

[4] observed that under such changes, a region-based

description from the skeletons of the objects is much

more stable than a boundary-based description. He
proposed that complex biological forms could be



134 T.S. Lee / Journal of Physiology - Paris 97 (2003) 121–139
described efficiently using the skeletons and a small finite
set of shape primitives. The skeleton transform, also

called the medial axis transform, is formally defined as

the locus of centers of the largest circles inside the re-

gion, hence touching its boundary in two distinct points

(Fig. 18). It provides a grammatical or structural ap-

proach to object representation: an object is decom-

posed into primitive parts [2,4,11,15,53,81] and are

linked together using a hierarchical framework as in the
parse tree of a sentence.

Given that the computation of medial axis involves

curve tracing which requires precise spatial precision

and orientation resolution in a 2D topological map, one

would expect that the early visual cortex should also

play a role in this computation. There is some indirect

evidence pointing toward this direction. In the texture

strip experiment described in Fig. 7, we [44,45] had
observed that some cells exhibited an enhancement peak

at the center of the texture strip. For a subpopulation

of neurons, it manifested as a weak, but sustained,

central peak that persisted in the later period of the

response (Fig. 7). These central peak could be stronger

and more significant for individual neurons. Fig. 19a–c

show the responses of a neuron to different parts of the

texture strip at different time windows. It can be ob-
served that as the boundary response became more

localized at the later phase of the response, a response
Fig. 18. Medial axis is a descriptor that integrates local and global informat

diameter of the inscribed disk. This figure illustrates how a cell may be constr

conjunction of three features has to be present: at least two distinct bounda

qualities within an inscribing disk. Such a response is highly nonlinear, but c

the Dalmatian dog image in V1 is shown. Saliency processes enhance the fi

computed from the pop-out figure in conjunction with the coloring process.
peak sometimes also appeared at the center or the axis
of the strip. The spatial response profiles of a neuron in

successive temporal windows in Fig. 19a–c show the

development of this central peak. In another dramatic

example (Fig. 19d–f), a vertically oriented neuron at

first did not respond at all within the horizontally tex-

tured strip, but became active at the axis of the strip

after 80 ms.

However, we observed that the central response peak
at the texture strip was sensitive to the width of the strip,

i.e. it tended to disappear as the width of the strip in-

creased. This suggests that the observed phenomenon

itself could be a mere epiphenomenon emerged from the

disinhibition and inhibition of the local circuitry in V1

[50,51]. However, it also hints at the possible existence of

a medial axis computation, as revealed by Kovacs and

Julesz’s psychophysical experiment [39]. It is worthwhile
to consider the several mechanisms for computing and

representing medial axis transform and look for evi-

dence for it in the early visual cortex. One mechanism is

the grass-fire algorithm originally proposed by Blum [4],

which mimics a grass fire that propagates in from the

boundary of a figure. The points of collision of the fire-

fronts form the skeleton of the figure, and the fire itself

colors the figure (Fig. 18). This idea is modeled in an
elegant formulation by Kimia et al. [36] which could be

implemented by the local connectivity structure within
ion. It encodes information about the location of the skeleton and the

ucted so that it fires when located on the medial axis of an object. The

ry points on a disk of a certain radius and the homogeneity of surface

an be robustly computed. A hypothetical view on the representation of

gure at the expense of the background. Skeleton of the object can be
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Fig. 19. (a–c) Spatial response profiles of a vertically oriented V1 neuron to different parts of the vertically textured strip. The abscissa is the distance

in visual angle from the RF center to the center of the figure. The solid lines in these graphs indicate the mean firing rate within the time window, and

the dashed lines depict the envelope of standard error. The later response of the neuron exhibits response peaks at the boundaries and at the axis of

the strip. (d–f) Another neuron’s response to the horizontally textured strip––the complement of the stimulus shown in Fig. 7. Approximately 40–60

ms after stimulus onset, the cell responded uniformly to the background but did not respond to the texture strip at all because it was not tuned to the

texture inside. From 60 to 80 ms, the boundary started to sharpen, but there was still no response within the strip. Interestingly, 80 ms onward, a

pronounced response peak gradually developed at the axis of the texture strip.
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V1. An alternative approach is to use a set of large

center-surround filters [15] to compute the axis in a

feedforward manner. An ensemble of such neurons,

each �tuning’ to an inscribing circle of a particular

diameter can potentially represent an invariant medial

axis. Even though the medial axis is a very attractive

computational idea, at this stage, the evidence is anec-
dotal and inconclusive. More carefully designed exper-

iments need to be carried out to carefully evaluate this

hypothesis. It is possible that the grassfire might be

mediated by subthreshold activities, and might be more

visible to optical imaging techniques.
5. Conclusions

In this paper, we present recent neurophysiological

evidence that supports the idea that the early visual

cortex should not be considered as merely a filter bank

in the first stage of processing, but as a high-resolution

buffer that supports a rich variety of visual computa-

tions. We have shown that the early visual cortex

potentially takes part in the computation and repre-
sentation of (1) perceptual contours, (2) surface shapes,

(3) object saliency and (4) possibly medial axis of forms.

We have shown while the early part of V1 neuronal

response is correlated to their orientation selectivity to

local features, the later part of V1 neuronal response is

correlated to higher order contextual processing. This

provides us a window to monitor the evolution of a
variety of visual computational algorithms.

Traditionally, the different stages of visual process-

ing were mapped to the different cortical areas, with

V1 responsible for early vision, and IT responsible for

late vision. The evidence reported here suggests that the

early visual areas are involved in many levels of visual

inference. The different stages of processing might occur

in multiple areas concurrently, which might be tightly
coupled together through the recurrent feedforward/

feedback connections (Fig. 20). Bullier and Nowak [9]

have also proposed, based on the timing of the response

onset of neurons in the different cortical areas, that

information might not be serially processed through

successive cortical areas, but simultaneously in multiple

areas. They have also recently proposed an integrated

model of visual processing in which V1 and V2 serve as
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Fig. 20. Our ideas on how the different cortical areas become engaged in different levels of visual processing at different time post-stimulus onset.

There is still a division of labor among the cortical areas with V1 responsible for detecting edges and completing contours; V2 responsible for the

computation and representation of surface and surface shapes; V4 responsible for coding higher order conjunctions or invariant structures and IT for

storing in a distributed fashion object prototypes. Each column depicts the involvement of a particular area in the various computations over time.

Each row depicts the completion of computation across the multiple areas. As time progresses, the activities in V1 should reflect the computations at

the higher cortical areas through the recurrent feedback connections. The rightward arrows indicate the bottom-up analysis path, and the leftward

arrows indicate the top-down synthesis path. The top-down synthesis path might or might not necessarily carry a synthesized expectation of the

image at the lower level. Rather it likely carries priors for influencing the Bayesian inference in the earlier areas.
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an �active black-board’ for the rest of the visual cortical
areas [10], in much the same spirit as the high-resolution

buffer hypothesis. Numerous other labs [28,33,68,69,57,

80] have also demonstrated spatial attention and object

attention effects in the early visual cortex at the level of
V1, particularly when the monkeys were engaged in

tasks involving curve tracing [69] and line alignment

[14,33]. These data, together with the findings reviewed

in this paper [45–47], support this new perspective on the

functional role of the early visual cortex in visual pro-

cessing.

While we found attention does play a very important

role in mediating both the illusory contour response [46]
and the shape from shading pop-out response in V1 [47],

we believe the feedback plays a more profound role than

merely selecting the relevant local features from the

early visual areas for downstream processing. Our evi-

dence from the shape from shading experiment dem-

onstrates that attention not only selects information to

feed forward, but might also actively gate feature-spe-

cific information back to the early visual areas. The
recurrent feedback between cortical areas might provide

the top-down priors for geometric inference in the early

visual areas in a hierarchical Bayesian inference frame-

work. Elucidating the nature of computations in each

cortical area, and the nature of the top-down priors is

central to understanding the fundamental principles of

visual inference.
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