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Perceptual organization, broadly defined, is a set of visual processes that
parses retinal images into their constituent components, organizing them
into coherent, condensed, and simplified forms so that they can be readily
interpreted and recognized. It generally includes many computational pro-
cesses before object recognition, such as filtering, edge detection, grouping,
segmentation, and figure-ground segregation. These processes are considered
to be preattentive, parallel, and automatic (Treisman & Gelade, 1980), medi-
ated by feedforward and intra-areal mechanisms (Palmer, 1999). Attention,
on the other hand, is thought to be driven by figure-ground organizatiion
rather than the other way around, even though some psychological evidence
does suggest that later processes such as recognition and experience could
influence earlier perceptual organization (Palmer, Neff, & Beck, 1996; Pe-
terson & Gibson, 1991). The nature and the extent of top-down influence
on perceptual organization thus remains murky and controversial. In this
article, I will first sketch a theoretical framework to reason about the com-
putational and neural processes underlying perceptual organization. This
framework attempts to unify the bottom-up organizational processes and
the top-down attentional processes into an integrated inference system. I
will then discuss some neurophysiological experimental findings that lend

strong support to these ideas.

THEORIES OF FEEDBACK

Marr’s (1982) proposal that visual processing could be decomposed into a
feedforward chain of relatively independent modules has had a strong influ-
ence on the vision community over the last twenty years. Neurophysiologists
have focused on the detailed elucidation of single cells’ properties and tuning
in each cortical area, while computer scientists have attempted to formulate

each computational module mathematically in isolation. Some psycholog-



ical evidence seem to suggest feedforward computations may be sufficient
in normal scene analysis. Thorpe, Fize, and Marlot (1996) demonstrated
that people and monkeys could perform categorization tasks very rapidly
and that event-related potentials (ERP) relevant to decision making can
be observed in the prefrontal areas within 150 ms, apparently leaving little
time for computations to iterate up and down the visual hierarchy. Much
of visual processing, they argued, must be based on essentially feedforward
mechanisms. In fact, many successful object detection and recognition algo-
rithms (Lades et al., 1993; Rowley, Beluja, & Kanade, 1998; Schneiderman
& Kanade, 1998) are based only on feedforward algorithms. These algo-
rithms typically use clustering or likelihood tests to classify patterns based
on the configuration of responses of low-level features detectors, effectively
bypassing the difficult perceptual organization problems. Hence, the domi-
nant conceptual framework today on perceptual processing is still based on
feedforward computations along a chain of computational modules (Palmer,

1999).

In recent years, it has become increasingly clear to computer scientists that
many problems in perceptual organization are difficult to solve without in-
troducing the contextual information of a visual scene (see Lee, Mumford,
Romero, & Lamme, 1998). Psychologists and neural modelers have in fact
long emphasized the importance of contextual feedback in perceptual pro-
cessing (Dayan, Hinton, Neal, & Zemel, 1995; Grossberg, 1987; McClelland
& Rumelhart, 1981; Mumford, 1992; Rao & Ballard, 1999; Ullman, 1994).
Their arguments were inspired partly by psychological findings, and partly
by theoretical considerations and the knowledge that there is an enormous
amount of recurrent anatomical connections among the cortical areas (Felle-

man & Van Essen, 1991).



The exact nature of information being fed back to the earlier areas, however,
is far being clear. There are three main proposals. The first suggests that
feedback carries explicit hypotheses or predictions similar to model-based
image rendering in computer graphics (Mumford, 1992; Mumford, 1996a).
The higher order hypothesis could feed back to to suppress (or explain away)
the earlier level descriptions that it can explain, as suggested in the predictive
coding framework (Mumford, 1996a; Rao & Ballard, 1999). Alternatively,
it could feed back to enhance (resonate with) the earlier representation that
is consistent with it, facilitating perceptual completion, as suggested in the
adaptive resonance/interactive activation framework (Grossberg, 1987; Mc-

Clelland & Rumelhart, 1981).

In the second proposal, the information being fed back is more general and
may be best understood in terms of top-down probabilistic priors in an
inference framework (Grenander, 1976; Grenander, 1978; Grenander, 1981;
Dayan, Hinton, Neal, & Zemel, 1995; Lee & Mumford, 2002; Tu & Zhu,
2002). Each area is endowed with its unique computational machinery and
carries out its own special computation. The priors could be specific in the
object domain but unspecific in spatial domain, or vice versa. They provide
general guidance to influence, rather than to micro-manage, the lower level

inference.

The third proposal has recently become popular in the neuroscience commu-
nity. It is primarily a mechanism for implementing selective attention (for
review, see Desimone & Duncan, 1995) and gain control (Prezybyszewski,
Gaska, Foote, & Pollen, 2000). The mechanistic framework for attentional
selection favored by neural modelers is called biased competition. Feedback
in this framework serves to provide a positive bias to influence the competi-

tion at the earlier levels (Deco & Lee, 2002; Reynold, Chelazzi, & Desimone,



1999; Usher & Niebur, 1996).

Despite some superficial contradictions, these three proposals are in fact
quite similar at a certain level. They reflect the concerns of three different
communities: psycho/neural modeling, statistical/Al, and biological. Here,
I attempt use a probabilistic inference framework rooted in the second pro-

posal to reconcile and unify all these perspectives.
BAYESIAN INFERENCE IN THE VISUAL HIERARCHY

Visual processing may be conceptualized as what Helmholtz (Helmholtz,
1867; Palmer, 1999) called the unconscious inference, or, what is recently
referred to as Bayesian inference (Knill & Richards, 1996). That is, we rely
on contextual information and our prior knowledge of the world to make
inferences about the world based on retinal data. Consider the image patch
depicted in Fig. 13.1a. Seen alone, it is merely a collection of spots and
dots. However, when placed in a larger scene context (Fig. 13.1b), the same
image patch assumes a more specific and richer meaning. The image in Fig.
13.1b is still quite ambiguous. It will take unfamiliar viewers a few minutes
before they perceive the object in the scene. However, once they are told
that the picture depicts a Dalmatian dog sniffing the ground near a tree,
the perception will start to crystallize in their minds. The spots and dots
are transformed into the surface markings of the dog’s body. Furthermore,
if the same viewers were to see this image again in the future, their memory
would help them see the dog instantly. This terrific example by R.C. James
illustrates the important roles of both the global context and prior knowledge

in perceptual inference.

From the Bayesian perspective, perceptual inference can be formulated as

the computation to obtain the most probable causes of the visual scene by



finding the a posteriori estimate S of the scene that maximizes P(S|I, K),
the conditional probability of a scene S given a particular image I, and our

knowledge of the world K. By Bayes’ theorem, this is given by,

P15, K)P(S|K)
P(I|K)

P(S|I,K) =

where P(I|S, K) is the conditional probability of the image given the scene
hypothesis S and the prior knowledge K. S has a hierarchical description
(e.g. edges, eyes, face, person), i.e. it is in fact a collection of hypotheses at
different levels S; with 4 indicating the level in the hierarchy. At a particular
level 4, one can think of prior knowledge to be captured by the possible
hypotheses at the other levels, i.e. P(S;—1,P(Si+1), P(Sit+2), etc. If we
assume that a cortical area talks primarily to an adjacent area, but not
to more distant areas, then the hierarchy can be considered to be roughly
Markovian, and the probability distribution of hypotheses at level ¢ can be

factorized as

P(Si|I,K) = P(S;-1|8:)P(Si|Si+1)/Z,

where Z is a normalization constant.

Let I be the information output by the retina, then
P(Signll, K) = P(I|S10)P(Sign|S1) /21,
P(Su1|I; K) = P(Sign|Sv1) P(Sv1|Su2)/ 22,
P(Sy2|I, K) = P(Sy1|Sv2) P(Sv2|Svs)/Z3,

etc., where Z's are normalization constants for each of the distributions,
and Si—ignv1,02,04,i¢ describes the hypotheses generated at the respective area

along the visual hierarchy.



For example, V1 receives input from the LGN and generates a set of hy-
potheses that might explain the LGN data. The generation is constrained
by feedforward and intracortical connections specified by P(Sjg,|Sv1), i-e.
how well each V1 hypothesis S,1 can explain Sjg,. Syo are the hypotheses
generated by V2 based on its input from V1 and feedback from higher areas.
V2 communicates directly to V1, but not LGN. The feedback from V2 to
V1 is given by the estimate that maximizes Sy9 1 x weighted by feedback
connections P(Sy1|Sy2), i.e. how well S,2 can explain away S,;. V1 is to
find the Sy; (at its level of interpretation) that maximizes P(S,1|l,K) =
P(Slgn|Sv1)P(Svl|Sv2)/Z-

This scheme can then be applied again to V2, V4, and IT recursively to
generate the whole visual hierarchy. Perception corresponds to each of the
cortical areas finding its best hypothesis S;, constrained by the bottom-up
and the top-down information. Each cortical area is an expert at inferring
some aspects of the visual scene. Unless the image is simple and clear,
each area normally cannot be completely sure of its conclusion and has
to harbor a number of candidate proposals simultaneously, waiting for the
feedback guidance and possibly a change in the input interpretation to select
the best hypothesis. The feedforward input drives the generation of the
hypotheses, and the feedback from higher inference areas provides the priors
to help select the most probable hypothesis. Information does not need to
flow forward and backward from V1 to IT in big loops, which would take
too much time per iteration. Rather, successive cortical areas in the visual
hierarchy can constrain each other’s inference in small loops instantaneously
and continuously in a Markov chain. The system, as a whole, could converge

to an interpretation of the visual scene rapidly and almost simultaneously.

EFFICIENT CODING IN THE HIERARCHY



Hierarchical Bayesian inference can tie together rather nicely the three plau-
sible proposals on the nature of feedback and its role on perceptual organi-
zation. In fact, it helps to reconcile some apparent contradictory predictions
from the pattern theory (Grenander, 1978; Mumford, 1996a; Rao & Ballard,
1999) and the resonance theory (Grossberg, 1987; McClelland & Rumelhart,
1981). In the hierarchical Bayes framework, many levels of descriptions (or-
ganizations) can coexist in the visual hierarchy, with the highest level of ex-
planations feasible most salient to visual awareness, or the cognitive/decision
processes. The high level description feeds back to attenuate the saliency
of the lower level descriptions, but should not annihilate them. This is an
important, but subtle distinction between this theory with Mumford’s ear-
lier interpretation of the pattern theory (Mumford, 1992; Mumford, 1996a;
Rao & Ballard, 1999). Most importantly, this top-down hypothesis also
serves to eliminate the alternative hypotheses in the earlier level, suppress-
ing more severely the responses of the neural ensembles that are representing
the alternative hypotheses. Thus, the early-level hypothesis consistent with
the higher level description is actually enhanced relative to the alternative
hypotheses, as predicted by the resonance theory. In this way, this hierar-
chical Bayes engine contains both the explaining away element as well as the

resonance element.

Let us use the Necker cube in Fig. 13.2a as an example. This line drawing
can be immediately perceived as a cube, rather than a bunch of lines and
junctions. The black dots, the most elementary level description, are orga-
nized into lines. The lines, their positions, and junctions are then organized
into a 3D cube interpretation at the higher level. The 3D percept is the
simplest description that explains all the evidences and is perhaps what first
penetrates into our consciousness. The 3D cube interpretation is then fed

back to early visual areas to attenuate the saliency of the representations



of line and edge elements, because they have been explained. For this sim-
ple picture, all one can observe is the explaining away, i.e., attenuation of
early visual neurons’ responses. Fig. 13.2b shows the same picture that is
corrupted with spurious noises. In this case, the theory predicts that the
higher order hypothesis of a cube will suppress all the noise elements more
severely than the edge elements that are consistent with the cube hypothe-
sis, enhancing (resonating) the consistent earlier representation in a relative
sense. This scheme is in fact a generalized form of efficient and sparse cod-
ing (Barlow, 1961; Field, 1994; Lewicki & Olshausen, 1999; Olshausen &
Field, 1995; Rao & Ballard, 1999 ). On the other hand, the consequence of
resonance is that the higher level hypothesis can help to complete missing
information at the earlier levels. One can imagine the V1 neurons at the
location of the gap (location A) in Fig. 13.2c will be activated in order
appropriately to be consistent with the 3D cube interpretation higher up!
These theoretical predictions are precisely what we observed in the following

two neurophyisological experiments in V1.
EVIDENCE IN THE EARLY VISUAL CORTEX

In the first experiment (Lee, Mumford, Romero, & Lamme, 1998), we stud-
ied how V1 neurons responded to different parts of a texture stimulus (Fig.
13.3a). While the monkey was fixating a red dot on the computer monitor,
an image was flashed on the monitor and lasted for 330 ms. The image
in this case was a texture strip subtending 4° of visual angle on a back-
ground of contrasting texture. The texture in each region was composed
of small randomly positioned lines of uniform orientation. Texture contrast
was defined as the difference in the orientation of the line elements. The
stimulus was presented at a randomized series of sampling positions relative

to the V1 cells’ classical receptive fields so that the temporal response of the



neurons to different parts of the stimulus (0.5° steps over a 12° range) was
measured one at a time. Fig. 13.3b shows the spatiotemporal response of
a set of vertically oriented neurons to the stimulus in Fig. 13.3a. Several
interesting observations can be made. First, the initial neuronal response
(35-70 ms post-stimulus onset) was characterized by the response to local
features, i.e. sensitivity to orientation of the line elements. Second, after
the initial burst of response, there was a transient pause, followed by a more
sustained response at a lower level. This phenomenon usually is consid-
ered an effect of intracortical inhibition, adaptation, or habituation. From
a Bayesian framework, this decay, in response in the later period of V1 neu-
rons’ activity, could be considered as a part of the explaining away by the
higher order description. Third, the response at the texture boundary was
significantly higher than the responses within the texture regions. This rela-
tive enhancement could be considered as a consquence of the cells’ resonance
with the global percept of surface discontinuity. Fourth, orientation sensi-
tivity of the cells was maintained at the later response, but the response was
sustained at a very low-level, suggesting a reduction in saliency but not in
coding specificity. Thus, the lower level representations did not completely
disappear, but instead were maintained at a lower level. This is important
because these activities might help to keep all irrelevant data for alterna-
tive hypotheses alive so that they might, at another moment, resurrect and
support an alternative hypothesis (e.g., switching between the two percepts
in the Necker cube). These observations are what one would expect from
hierarchical Bayesian inference engine, though they can also potentially be
explained by passive intracortical inhibition mechanisms (Stemmler, Usher,

& Neibur, 1995; Li, 2001).

In the second experiment (Lee & Nguyen, 2001), we used a similar paradigm

to examine how V1 neurons responded to the subjective contour of a sub-

10



jective Kaniza square (Fig. 13.4a and Fig. 13.4b). Over successive trials,
the illusory contour was placed at different locations relative to the center
of the receptive field, 0.25° apart, spanning a range of 2.25°, as shown in
Fig 13.4b. Figures 13.4c-13.4j display examples of other control stimuli also
tested in the experiment. In each trial, while the monkey fixated, a sequence
of four stimuli was presented. The presentation of each stimulus in the se-
quence lasted for 400 ms. In the presentation of the Kanizsa figure, four
circular discs were first presented, and then they were abruptly turned into
four partial discs, creating the illusion of a subjective square appearing in
front of the four circular discs. Fig. 13.5a shows that the illusory contour
response of a multiple-unit occurred at precisely the same location of a real
contour response, indicating the spatial precision of the response. Fig. 13.5b
and Fig. 13.5c compare the temporal evolution of this unit to the illusory
contour and the responses to a variety of real contours and controls. This
unit responded significantly more to the illusory contour than to the amodal
contour or to any of the rotated disc configurations (controls) (see Lee &
Nguyen, 2001). For this neuron, as well as for the V1 populations in the
superficial layer, the temporal onset of the response to illusory contour was
at about 100 ms after the abrupt onset of the illusory square, while the onset
of the responses to the real contours occurred at about 40-50 ms (Fig. 13.5¢
and Fig. 13.5d). The response of V2 neurons to the same illusory contour

was much earlier, at about 65 ms (Fig. 13.5e).

These observations suggest that V2 could be detecting the existence of an
illusory contour first by integrating information from a more global spatial
context, forming a hypothesis of the boundary of the Kanizsa square. V2
neurons, because of their larger receptive fields, could not provide a spatially
precise representation of the sharp illusory contour. They can only inform

the existence of a boundary at a rough location. V1 is recruited to compute
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and represent the precise location and orientation of the contour because
it has the machinery for computing and representing precise curvilinear ge-
ometry efficiently or ‘sparsely’. The hypothesis of a Kanizsa square and its
supporting illusory boundary are represented simultaneously by many vi-
sual areas, such as V1, V2, and even IT where the concept of a square is
represented. From this perspective, V1 does not simply perform filtering
and edge detection and then forward the results to the extrastriate cortex
for further processing (Hubel & Wiesel 1962). Rather, it is an integral part
of the visual system that continues to participate in all levels of visual rea-
soning insofar as the computations that require spatial precision and high
resolution details provided by V1. This is the basic rationale underlying
the high-resolution buffer hypothesis that Mumford and I (Mumford, 1996b;
Lee, Mumford, Romero, & Lamme, 1998) proposed a few years ago — a view

now shared by many others (e.g. Bullier, 2001).

ATTENTION AS TOP-DOWN PRIORS

The hierarchical Bayesian framework discussed above is appropriate for con-
ceptualizing perceptual organization or interpretation of the input image.
The feedback carries the contextual priors generated by the higher level de-
scription, directly related to what biologists call contextual processing (see
Albright & Stoner, 2001 for review). Attention is another type of feedback
that places priority or value in the information to be analyzed and makes
perception purposeful. In fact, the dominant view in the biological commu-
nity on the functional role of feedback is the mediation of selective attention
(for reviews, see Desimone & Duncan, 1995; Itti & Koch, 2001). Since both
attention and contextual priors utilize the same recurrent feedback path-
ways, it might be reasonable to consider attention in terms of priors and

unify the two functions in a single framework.
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People usually think of attention in terms of spatial attention, a spotlight
that ‘illuminates’ a certain location of visual space for focal visual analysis
(Helmholtz, 1867; Treisman & Gelade, 1980). Attentive processing is usually
considered a serial process that requires moving the spotlight around in
the visual scene to select the location to be analyzed. There are in fact
many types of attention. Feature or object attention is involved when we
are searching for a particular feature or object in a visual scene (James,
1890). In spatial attention, selection is focused on the spatial dimension and
dispersed (parallel) in the feature dimension; while in feature attention, the
selection is focused on the feature dimension and dispersed (parallel) in the
spatial dimension. A generalization of feature attention is object attention,
in which a configuration of features belonging to an object is searched. It
was believed that conjunctive search operates in a serial mode (Treisman &

Sato, 1990; Wolfe, 1998).

In recent years, a number of neurophysiological studies have shown that
attention can modulate visual processing in many cortical areas (Desimone
& Duncan, 1995) and even the receptive fields of neurons (Connor et al.,
1997; Tolias et al., 2001). The popular model for explaining the mechanism
of attention is called biased competition (Deco & Lee, 2002; Desimone &
Duncan, 1995; Duncan & Humphreys, 1989; Reynolds et al., 1999; Usher &
Neibur, 1996). The basic idea is that when multiple stimuli are presented in
a visual field, the different neuronal populations within a single cortical area
activated by these stimuli will engage in competitive interaction. Attending
to a stimulus at a particular spatial location or attending to a particular
object feature, however, introduces a bias to influence the competition in
favor of the neurons at the attended location and at the expense of the
other neurons. The biased competition mechanism, formulated in terms of

differential equations with roots in the connectionist models, has also been
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used in several models for explaining attentional effects in neural responses
observed in the inferotemporal cortex (Usher & Niebur, 1996) and in V2 and
V4 (Reynolds, Chelazzi, & Desimone, 1999).

Conceptually, biased competition can also be formulated into a probabilistic
framework as follows. Recall that the hierarchical Bayesian inference in the
visual system can be described as the process for finding the scene variables

S; Vi that maximizes the joint probability,

P(I, Slgnasvla---asit) - P(I|Slgn)P(Slgn‘SUI)P(Svl|S'u2)
'P(SvQ|Sv4)P(Sv4|Sit)P(Sit)a

where P(S;;) is the prior on the expected frequency of the occurrence of

various object categories.

Top-down object attention can be incorporated in this framework by includ-

ing the prefrontal areas (area 46) in the hierarchy as follows,

P(I, Slgna---aSa461)) = P(I|Slgn)P(Slgn‘SUI)P(SUI|S'u2)

P (Sy2|Sp4a) P(Sya|Sit) P(Sit|Sasev) P(Sasév)s

where ventral area 46 (a46v) is the area for executive control that will deter-
mine what object to look for and what object to remember. It integrates a
large variety of contextual information and memory from the hippocampus,
basal ganglians, cingulate gyrus, and many other prefrontal areas to make
decisions and resolve conflicts (Miller & Cohen, 2001). It sets priority and

endows value to make visual object processing purposeful and adaptive.
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Because the hierarchy is reciprocally connected, this implies that attention,
higher order contextual knowledge, and behavioral experience should be able
to penetrate back to the earliest level of visual processing, at least as early
as V1 and LGN. This was precisely what we observed in the following ex-

periments.

BEHAVIORAL EXPERIENCE AND TASK DEMANDS

In this experiment (Lee, Yang, Romero, & Mumford, 2002), my colleagues
and I studied the effect of higher order perceptual construct such as 3D
shape and behavioral experience on the neural processes in the early visual
cortex (V1 and V2). We used a set of stimuli that allowed the dissociation of
bottom-up low-level stimulus contrast from top-down higher order percep-
tual inference (Fig. 13.6). The stimuli included a set of shape from shading
stimuli, which have been found to pop out readily (Braun, 1993; Ramachan-
dran, 1988; Sun & Perona, 1996) and a set of two-dimensional contrast
patterns, which do not pop out spontaneously, even though the latter have
stronger luminance contrast and evoke stronger bottom-up raw responses in
V1 neurons (see Fig. 13.6). The stronger pop-out of shape from shading
stimuli in this case has been attributed to their 3D interpretation. There-
fore, if we see a neural correlate of this stronger pop-out modulation due to
shape from shading in V1, it would be a clear case of top-down modulation

due to higher order percepts.

To evaluate the impact of behavior on early visual processing, we also divided
the experiment into two stages, a pre-behavior stage and a post-behavior
stage. In both stages, the monkeys performed the same fixation task, i.e.,
fixating a red dot on the screen during stimulus presentation. In the pre-

behavior stage, the monkeys had not used the stimuli in their behavior. In
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the post-behavior stage, the monkeys had utilized the stimuli in their be-
haviors for a period of time. Specificially, they had been trained to detect
the oddball of the various types and make a saccadic eye movement to it.
Interestingly, V1 neurons were significantly sensitive to perceptual pop-out
modulation in the post-behavior stage, but not in the pre-behavior stage.
Pop-out modulation was defined by the enhancement of the neuronal re-
sponses to the oddball condition relative to the uniform condition, while the
stimulus on the receptive field of the neurons was kept constant (Fig. 13.6;
Fig. 13.7). Furthermore, the pop-out modulation in V1, and similarly in
V2, was a function of the stimuli, directly correlated with the subjective per-
ceptual pop-out saliency we perceive in the stimulus. Fig. 13.7 shows that
the lighting from above [LA] and lighting from below [LB] oddballs pop out
strongly, the lighting from left [LL] and right [LR] oddballs pop out moder-
ately, and the 2D contrast oddballs do not pop out at all (Ramachandran,
1988). It also shows a strong correlation between the behavioral performance
(reaction time and percentage correct) of the monkeys and the neural pop-
out modulation in V1. Thus, the neural modulation we observed in V1 could

be considered a neural correlate of perceptual saliency.

Apparently, the pop-out detection task forced the monkeys to see the stim-
ulus more clearly and to precisely localize the pop-out target in space. This
is a task that would engage V1’s machinery according to the high-resolution
buffer hypothesis. Even though the monkeys were required only to fixate
during the experiment, having practised the pop-out detection task for two
weeks apparently had made the early pop-out processing more or less auto-
matic. On the other hand, the pop-out effect could be greatly attenuated
when the monkeys were asked to perform a very attention demanding con-
flicting task. The pop-out signals emerged in V1 and V2 at roughly the
same time (95 ms for V2 and 100 ms for V1). Interestingly, Bichot and

16



Schall (1999) also found that the target selection/decision signal emerged
in the frontal eye field during a visual search task at about the same time
frame, around 100-130 ms, supporting the intuition that interactive compu-
tation may not take place in a step-wise linear fashion iteratively, but may
occur interactively and concurrently between adjacent areas in the brain.
The cycle time is much shorter under continuous dynamics. From this point
of view, the 150 ms time frame reported by Thorpe, Fize, and Marlot (1996)
is quite sufficient for the whole hierarchy to settle down to a perceptual

interpretation of the visual scene.

Perceptual pop-out has been thought to be an operation that is parallel,
automatic, and preattentive. The findings discussed suggest that attention
may be involved in the normal operation for early perceptual organization
such as pop-out and grouping. The idea that attention may play a role in this
parallel computation might seem to be at odds with conventional notions.
However, recent psychological studies (Joseph, Chun, & Nakayama, 1997)
suggested that attention may be critical for the detection of preattentive
features and may, in fact, be necessary for overt perception of these stimulus
features. These data suggest a stronger link between perceptual organization

and attention, as well as behavioral experience.

OBJECT-BASED SPATIAL ATTENTION

Granted the signal we observed in the last experiment was related to percep-
tual saliency, what is the advantage of having the attentional highlighting
signals going all the way to V1?7 Two observations help to reveal the impor-
tant role of V1 in this computation. First, in the shape from shading pop-out
experiment, we found that the pop-out enhancement could be found only at

exactly the location of the oddball, but not at the locations right next to it,

17



indicating that the highlighting effect is both spatially specific and stimulus
specific. Second, when we examined the responses of V1 neurons to differ-
ent parts of a texture square in a contrasting background (Fig. 13.8), my
colleagues and I (Lee, Mumford, Romero, & Lamme, 1998) found that V1
neurons’ responses were enhanced when their receptive fields were placed
inside a texture-defined figure relative to when they were placed in a tex-
tured background and that this enhancement was uniform within the spatial
extent of the figure, just as Lamme (1995) discovered earlier. Further, we
also found that this highlighting signal is spatially bounded by the bound-
ary response of the neurons (Fig. 13.8). Cortical organization beyond V1
is segregated according to more abstract attributes and is less topologically
precise. Only in V1 could one find a spatially precise grid-like spatial topol-
ogy, in Ullman’s (1984) terms, to color the surface of an object clearly and
precisely. This highlighting or coloring operation through attention might
be the neural basis of object-based spatial attention (Behrmann, Zemel, &

Mozer, 1998; Olson, 2001).

INTEGRATION OF OBJECT AND SPATIAL INFORMATION

The computation of perceptual pop-out saliency of the shape from shad-
ing stimuli is likely a product of three types of computation, bottom-up
saliency, shape recognition (stimulus-evoked object attention), and spatial
localization (stimulus-evoked spatial attention). It requires the interaction of
the early visual areas with both the dorsal stream (e.g. LIP) and the ventral
stream (e.g. IT, see Logothetis, 1998). The top-down object attention and
spatial attention feedback from both streams, coupled with intracortical con-
textual computation, produce the spatially precise higher order perceptual

saliency effect.

18



So far I only talked about the hierarchical inference of object forms, but
the inference of space could also be formulated in the same way, only with
a change of variable from S to S’ to indicate the spatial aspects of the
information and the assumption that spatial attention is initiated by an

input from dorsal area 46.

P(Ia Slgn"-'aS;o""a (11.46(1) = P(I‘Slgn)P(Slgn|ST)1)P(SUI‘311)2)
"P(Sy2]Sy3) P (31 Sp0)

P(8,,|S4164) P (Sqaa)>

The scene variables S} in this case concern the spatial position encoding and
spatial coordinate transforms. For simplicity, let us assume that the cross-
talk between the higher areas in the different streams is relatively weak, then

the activity of V1 is given by S,; that maximizes,

P(Sv1|SlgnaSv2aSTI;2’---) = P(Slgn|S'u1)P(Svl|S'u2)P(Su1|SqI)2)/Z

In the cortex, the what and where pathways are segregated into the ventral
and the dorsal streams respectively (Ungerleider & Mishkin, 1982). Their
recurrent interaction in V1 therefore can integrate the spatial and object
information. More generally, different aspects of information from each hy-
percolumn in V1 are channelled to visual modules or modular streams for
further processing, and the feedback from these extrastriate modules to V1
carries the invariant information they inferred. V1, as the high-resolution
buffer, is where all the higher order information can come back together to
the same spatial locus to re-integrate all the ‘broken’ features into a unified

percept.
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Deco and I (Deco & Lee, 2002) developed a neural dynamical model, which
could be considered as a deterministic approximation (Abbott, 1992; Amit
& Tsodyks, 1991; Wilson & Cowen, 1997) of the statistical inference frame-
work, to explore the possibility that V1 can serve as a buffer to coordinate
the interaction between the dorsal stream and the ventral stream and to
achieve feature integration in conjunctive visual search (Deco & Lee, 2002).
For simplicity, the model contains only three modules. The V1 module is
directly and reciprocally connected to the IT module, which encodes object
classes, and to the PO module, which encodes spatial location. The pre-
frontal areas can exert a top-down bias to a particular neuronal pool in IT
to initiate object attention (what to look for) or to a particular neuronal
pool in PO to initiate spatial attention (where to look at). V1 is modeled
with a two-dimensional grid of hypercolumns, each with 24 pools of complex
cells (8 orientations and 3 scales). PO is modeled by a two-dimensional grid
of nodes. Each node (neuronal pool) indicates a particular spatial location
and is connected to a small spatially contiguous subset of V1 hypercolumns
in a reciprocal manner. Each IT neuron represents a particular object and
is connected reciprocally to every V1 neuron. The pattern of connection is
symmetrical and is learned by Hebbian learning, but the feedback weights
are weaker than the feeforward weights (set to 60 percent) (see Deco &
Lee, 2002 for details). Within each module, there are inhibitory neurons to

mediate competition.

When a single object is presented to the retina, a local region of V1 neurons
will be activiated, which will activate a number of IT neurons and a number
of PO neurons. Competition within IT and within PO will rapidly narrow
down a winner cell in IT (corresponding to recognizing the identity of the
presented object) and a winner cell in PO (corresponding to localizing the

object in space). The coactivation of the specific pools of neurons in the
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three modules corresponds to the unified percept of identity, location, and

features of the presented object.

Visual search (object attention) is initiated by introducing a top-down pos-
itive bias to an IT neuron, presumably from the prefrontal cortex (Rao,
Rainer, & Miller, 1997). The IT neuron will project a top-down template
of subthreshold activation to V1. Any subset of V1 hypercolumns whose
response patterns match that of the top-down template will be selectively
enhanced, as in resonance. These enhanced neurons exert a suppressive ef-
fect on other V1 neurons and provide a stronger bottom-up bias to the PO
neuron corresponding to that location. Initially a number of PO neurons
scattered in space will be activated by bottom-up V1 input. Over time, the
lateral inhibition in PO will narrow the activation to a very localized set of
neurons in PO, indicating the localization of the searched object. Interest-
ingly, this model can produce the effect of both the parallel search and the
serial search using one single mechanism. When the system is instructed to
search for an E in a field of X’s, the time for the PO to converge to a sin-
gle location is independent of the number of X’s, corresponding to parallel
search. When the system is instructed to search for an E in a field of F’s,
the search time increases linearly with the number of distractors F. This is
because when the target and the distractor are similar, the responses in the
V1 hypercolumns (at least in feature level) to each are very similar, causing
a confusion that requires constant interaction between V1 and IT to grad-
ually resolve. Surprisingly, for reasons we do not completely understand,
the time required to search for an ambiguous conjunctive target is linearly
proportional to the number of distractors, as in serial search. Apparently,
the phenomena of serial and parallel search is a stimulus-dependent effect
that emerges from the same parallel mechanism (see Deco & Lee, 2002 for

details).
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Spatial attention can be introduced by providing a bias (spatial prior) to a
particular neuronal pool in PO. The interaction between PO and V1 acts in
very much the same way except that the top-down bias from PO is spatial
rather than featural. PO extracts only the spatial information from V1 to
focus the competition on the spatial domain. This facilitates the conver-
gence, or localization, of the winner in a visual search task. In our model,
spatial attention serves a very useful purpose: the gating of information
from V1 to IT is accomplished simply by PO’s modulation of V1 activities
rather than by modulating the feedforward connection weights as in other
models (Olshausen, Andersen, & Van Essen, 1993; Reynolds, Chelazzi, &
Desimone, 1998). The system can serially channel visual information from
different V1 hypercolumns to IT for object recognition simply by allocating
the top-down spatial prior to different neuronal pools in PO. Another inter-
esting observation is that a relatively small top-down modulation in V1 from
PO is sufficient to relay a bias to I'T to produce a winner in I'T. This suggests
that even though the top-down effect in the early visual areas is small, it
could still be effective in coordinating the communication and information
integration among multiple visual streams. Simple as it is, the model is suf-
ficient to illustrate how the early visual cortex can coordinate and organize
parallel and distributed computations in the visual system from a dynamical

system perspective.
CONCLUSION

In this article, I propose that hierarchical probabilistic Bayesian inference,
when coupled with the concept of efficient coding, provides a reasonable
framework for conceptualizing the principles of neural computations under-
lying perceptual organization. I have described a number of recent exper-

imental findings from my laboratory providing evidence in support of this
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framework. Evidence from other laboratories (Albright & Stoner, 2002; Crist
& Gilbert, 2001; Grosof, Shapley, & Hawken, 1993; Haenny & Schiller, 1988;
Hupe et al., 1998; Lamme, 1995; Itto & Gilbert, 1999; Motter, 1993; Murray
et al., 2002; Ress, Backus, & Heeger, 2000; Roelfsema, Lamme, & Spekreijse,
1998; von der Heydt, Peterhans, & Baumgarthner, 1984; Zhou, Friedman,
& von der Heydt, 2000; Zipser, Lamme, & Schiller, 1996) on the top-down
contextual influences in the early visual areas also support the basic premise

of this theory.

The hierarchical Bayes framework proposed here can reconcile some apparent
contradictions between the predictive coding theory (Mumford, 1996a; Rao
& Ballard, 1999) and adaptive resonance theory (Grossberg, 1987) in that it
contains both the ‘explaining away’ as well as the ‘resonance’ components.
Here, the top-down feedback of a higher level hypothesis does attenuate the
saliency of the earlier representations that support it on the one hand, but
also suppresses even more severely the alternative evidence and hypotheses.
This framework also unifies top-down attention and bottom-up perceptual
inference into a single hierarchical system. Attention can be considered as
a variety of top-down priors (spatial, object, feature) for influencing the

perceptual inference at the earlier levels.

Perceptual organization, such as grouping, segmentation, and figure-ground
segregation, however, involves far more sophisticated computations than
competitive interactions (e.g., August & Zucker, 2000; Blake & Zisserman,
1987; Grossberg, Mingolla, & Ross, 1994; Konishi, Yuille, Coughlan, & Zhu,
2002; Lee, 1995; Shi & Malik, 2000; Tu & Zhu, 2002; Weiss, Simoncelli,
& Adelson, 2002; Williams & Jacobs, 1997; Yu, Lee, Kanade, 2002; Yu,
2003; Yuille & Bulthoff, 1996; Zhu, Lee, & Yuille, 1995). The hierarchy idea

proposed here is deeply connected with the idea of compositional hierarchy
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from Bienenstock, Geman, and Potter (1997). With the addition of recur-
rent feedback of contextual and attentional priors, the proposed hierarchical
framework provides a broader view on the nature of cortical computations
of perceptual organization. Elucidating the varieties of Bayesian priors as
a function of task demands and environmental statistics is important for
understanding the computational and neural basis of attentive perceptual

organization.
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Figure captions
Figure 13.1

(A) An image patch of spots and dots. (B) The image patch situated in a

particular scene, as originally designed by R.C. James.
Figure 13.2

(A) A Necker cube. (B) A cube with background noises. (C) A cube with

missing information.

Figure 13.3

(A) A texture strip with width of 4° visual angle. The strip is composed of
short vertical line segments, and the background is composed of short hor-
izontal line segments. (B) Spatiotemporal average response of a population
of 14 V1 vertical neurons to a texture strip stimulus at different positions
along a horizontal sampling line across the strip. The abscissa is the dis-
tance in visual angles from the RF center to the center of the strip. The
texture boundary is located at -2.0 and 2.0 degree visual angles away from
the center. The responses to the texture stimuli were initially uniformly high
within the strip and low outside the strip corresponding to the the vertical
orientation tuning of the cells. At 60 ms after stimulus onset, boundary
signals started to develop at the texture boundaries. In the later stage, the
responses in general were lower than the initial responses, but the responses
at the boundaries were sharper and stronger relative to the rest of the image

(see Lee, Mumford, Romero and Lamme (1998) for details).

Figure 13.4

33



(A) A figure of illusory contour and the ten different parts (marked by lines)
that were placed over the receptive field of a horizontally oriented neuron over
successive trials during an experiment. (B) In a typical trial, the stimulus
was presented in a sequence, 400 ms for each step. The first step displayed
four circular discs, which then turned into four partial discs in the second
step. The abrupt onset of the illusory square captures the attention of the
monkey and makes the illusory square more salient. The third and fourth
steps repeated the first and second steps. In each trial, the response of
the cell to one location of the figure was examined. (C) Some examples
of other stimuli that were also examined as controls. From “Dynamics of
Subjective Contour Formation in the Early Visual Cortex,” by T.S Lee,
and M. Nguyen, 2001, PNAS 98(4), 1907-1911. Copyright 2001 by PNAS.
Adapted with permission.

Figure 13.5

(A) The spatial profile of a V1 neuron’s response to the contours of both
real and illusory squares in a temporal window 100-150 ms after stimulus
onset at the 10 different locations relative to the illusory contour. This cell
responded to the illusory contour when it was at precisely the same location
(x = 0) where a real contour evoked the maximal response from the neuron.
This cell also responded significantly better to the illusory contour than to
the amodal contour (T-test, p < 0.003) and did not respond much when the
partial discs men were rotated. (B) Temporal evolution of this cell’s response
to the illusory contour, the amodal contour and the various rotated corner
disc controls at the location where the real contour elicited the maximum
response. The response to the illusory contour emerged at about 100 ms
after the illusory square appeared. The cell responded slightly to the amodal

contour and did not respond to any of the rotated corner discs. (C) The cell’s
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response to the illusory contour compared to its response to the real contours
of a line square, or a white square. The onset of the response to the real
contours was at 45 ms, about 55 ms before the illusory contour response. (D)
Population averaged temporal response of 50 V1 neurons in the superficial
layer to the real and illusory contours. (E) Population averaged temporal
response of 39 V2 neurons in the superficial layer to the real and illusory
contours. From “Dynamics of Subjective Contour Formation in the Early
Visual Cortex,” by T.S Lee, and M. Nguyen, 2001, PNAS 98(4), 1907-1911.
Copyright 2001 by PNAS. Adapted with permission.

Figure 13.6

(A) A typical stimulus display was composed of 10 x 10 stimulus elements.
Each element was 1° visual angle in diameter. The diameter of the classical
receptive field (RF) of a typical cell at the eccentricities tested ranged from
0.4° to 0.8° visual angle. Displayed is the LA (Lighting from Above) oddball
condition, with the LA oddball placed on top of the cell’s receptive field,

indicated by the open circle. The solid dot indicates the fixation spot.

(B) There are six stimulus sets. Each stimulus set had four conditions:
singleton, oddball, uniform, and hole. Displayed are the iconic diagrams
of all the conditions for the LA set, the LB set, as well as the oddball
conditions for the other four sets. The center element in the iconic di-
agram covered the receptive field of the neuron in the experiment. The
surround stimulus elements were placed outside the RF of the neuron. The
comparison was between the oddball condition and the uniform condition,
while the singleton and the hole conditions were controls. The singletons
measured the neuronal response to direct stimulation of the RF alone; the

holes measured the response to direct stimulation of the extra-RF surround
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only. From “Neural Activity in Early Visual Cortex Reflects Experience and
Higher Order Perceptual Saliency,” T.S. Lee, C. Yang, R. Romero, and D.
Mumford, 2002, Nature Neuroscience, 5(6), 589-597. Copyright by Nature

Neuroscience. Adapted with Permission.

Figure 13.7:

Temporal evolution of the normalized population average response of 45 V1
units from a monkey to the LA set (A) and the WA set (B) at the post-
behavior stage. Significant pop-out response was observed in LA (as well
as LB, LL, and LR) starting at 100 msec after stimulus onset. No pop-out
response was observed for WA (or WB). (C) Mean pop-out modulation ratios
of 45 units for all six stimulus sets. Pop-out enhancements were statistically
significant for stimuli LA, LB, LL, and LR, but not for WA and WB. The
pop-out modulation is computed as (A-B)/(A+B), where A was the response
to the oddball condition and B was the response to the uniform condition.
(D) Correlation between reaction time and V1 pop-out modulation for the
six sets of stimulus. Data from three different stages (hence 18 points) are
plotted. A significant negative correlation was observed between reaction
time and pop-out modulation ratio. From “Neural Activity in Early Visual
Cortex Reflects Experience and Higher Order Perceptual Saliency,” T.S. Lee,
C. Yang, R. Romero, and D. Mumford, 2002, Nature Neuroscience, 5(6),

589-597. Copyright by Nature Neuroscience. Adapted with Permission.

Figure 13.8

Object-based spatial attention effect. V1 neurons’ responses were found to
be enhanced inside the figure relative to outside the figure. (A) and (B)
show figures defined by texture contrast. (C) illustrates the placement of

the receptive field when the neuron’s preferred orientation is vertical. There
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are two sampling schemes: parallel sampling, when the preferred orienta-
tion of the cells is aligned with the orientation of the texture boundary; and
orthogonal sampling, when the preferred orientation of the cells is orthog-
onal to the orientation of the texture boundary. (D) shows the population
averaged response of 45 neurons in the parallel sampling scheme with the
response to (A) and the response to (B) summed at each spatial location.
(E) shows the population averaged response of 16 neurons in the orthogonal
sampling scheme. In the parallel sampling scheme, we found a persistent and
large texture edge response, which was absent in the orthogonal sampling
scheme, suggesting that cells were sensitive to the orientation of the texture
boundaries. The response inside the figure showed a definite enhancement at
about the 15 percent level for both schemes. The response inside the figure in
the orthogonal sampling scheme appeared as a plateau. The normalization
exaggerated or dramatized the 15 percent enhancement effect. From “The
Role of the Primary Visual Cortex in Higher Level Vision,” by T.S. Lee,
D. Mumford, R. Romero, and V.A.F. Lamme, 1998, Vision Research, 38,

2429-2454. Copyright by Elsevier Science. Adapted with permission.

Figure 13.9

A schematic diagram of the model. The simplified model contains three
modules: the early visual module (V1), the ventral stream module (IT),
and the dorsal stream module (PO). The V1 module contains orientation-
selective complex cells and hypercolumns as in the primary visual cortex
(V1). The IT module contains neuronal pools coding for specific object
classes as in the inferotemporal cortex. The PO module contains a map
encoding positions in spatial coordinates as in the parietal occipital cortex
or posterior parietal cortex. The V1 module and the IT module are linked

with symmetrical connections developed from Hebbian learning. The V1

37



module and the PO module are connected with symmetrically localized con-
nections modeled with Gaussian weights. Competitive interaction within
each module is mediated by inhibitory pools. Connections between mod-
ules are excitatory, providing biases for shaping the competitive dynamics
within each module. Convergence of neural activation to an individual pool
in the IT module corresponds to object recognition. Convergence of neu-
ral activation to a neuronal pool in PO corresponds to target localization.
The V1 module provides the high-resolution buffer for the IT and the PO
modules to interact. From “An Unified Model of Spatial and Object At-
tention Based on Inter-cortical Biased Competition,” by G. Deco and T.S.

Lee, 2002, Neurocomputing, 44-46, 769-774. Copyright by Elsevier Press.

Adapted with permission.
Figure 13.10

(A) A Paris scene. (B) In a wvisual search task, the system functions in
the object attention mode. For example, when the scene was presented to
the retina, a top-down bias is imposed by the prefrontal area to a tower
neuronal pool in the IT. This bias, when combined with the bottom-up
excitation from V1, enables the tower neuron to dominate over the neurons
encoding the other objects, such as the sculpture. (C) and (D) show that the
activation of the PO map and the V1 map have converged to a single spatial
locus at 160 ms after stimulus onset, indicating that the target (tower) has
been localized. (E) The letter L can be instantly detected in a field of X’s
but not in a field of T’s by humans. (F) The model system can detect L
in a field of X in constant time, but the time required to detect L in a
field of T’s increases linearly with the number of T’s. This shows that serial
search and parallel search is in fact implemented by a single object-attention

mechanism.
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Figure 5:
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Figure 6:
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Figure 7:
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Figure 8:
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Figure 9:
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V1 Module Map at 160 ms
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