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Abstract:

Features associated with an object or its surfaces in natural scenes tend to vary coherently
in space and time. In psychological literature, these coherent covariations have been de-
scribed as important for neural systems to acquire models of objects and object categories.
From a statistical inference perspective, such coherent covariation can provide a mecha-
nism to learn statistical priors in natural scenes that are useful for probabilistic inference.
In this article, we present some neurophysiological experimental observations in the early
visual cortex that provide insights into how correlation structures in visual scenes are be-
ing encoded by neuronal tuning and connections among neurons. The key insight is that
correlated structures in visual scenes result in correlated neuronal activities, which shapes
the tuning properties of individual neurons and the connections between them, embedding
Gestalt-related computational constraints or priors for surface inference. Extending these
concepts to the inferotemporal cortex suggests a representational framework that is distinct
from the traditional feed-forward hierarchy of invariant object representation and recogni-
tion. In this framework, lateral connections among view-based neurons, learned from the
temporal association of the object views observed over time, can form a linked graph struc-
ture with local dependency, akin to a dense aspect graph in computer vision. This web-like
graph allows view-invariant object representation to be created using sparse feed-forward
connections, while maintaining the explicit representation of the different views. Thus, it
can serve as an effective prior model for generating predictions of future incoming views to
facilitate object inference.

Introduction

Visual scenes are often complex and ambiguous to interpret because of the myriad causes
that generate them. To understand visual scenes, our visual systems have to rely on our
prior experience and assumptions about the world. These priors are rooted in the statistical
correlation structures of visual events in our experience. They can be learned and exploited
for probabilistic inference in a Bayesian framework using graphical models. Thus, we believe
that understanding the statistics of natural scenes and developing graphical models with
these priors for inference are crucial for gaining theoretical and computational insights to
guide neurophysiological experiments. In this paper, we will provide our perspective based
on our works on scene statistics, graphical models and neurophysiological experiments.

An important source of statistical priors for inference is the statistical correlation of visual
events in our natural experience. In fact, it has long been suggested in the psychology
community that learning due to coherent covariation of visual events is crucial for the
development of Gestalt rules (Koffka 1935) as well as models of objects and object categories
in the brain (Gibson 1979, Roger and McClelland 2004). Nevertheless, there has been
relatively little research on how correlation structures in natural scenes are encoded by
neurons. Here, we will first describe experimental results obtained from multi-electrode
neuronal recording in the primary visual cortex of awake-behaving monkeys. Each study
was conducted at least on two animals. These results reveal mechanisms at the neuronal
level for the encoding and the influence of scene priors in visual processing. Insofar as
these mechanisms likely emerge from Hebbian learning (Hebb 1949) or its variant that is
sensitive to the timing of the events (Markram et al. 1997), we conjecture that the same
basic principles and mechanisms are universal, repeating themselves throughout the visual
cortex. We argue that extending these principles to the inferotemporal cortex could provide
a new perspective on object representation.
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Figure 1: Neuronal preference for 1/f correlational structures in natural scenes. A: An
example of the sine-wave grating stimulus input. The arrows indicate the directions of
motion of the grating. B: The power spectra for the three classes of 1/fβ signals with
β = 0 (white), β = 1 (pink) and β = 2 (brown) respectively. C: The top row depicts
the phase of the motion of the input grating. The second row is the raster plot of a V1
neuron’s response to the three sequences of input. The third row is the PSTH of the neuron’s
response. The β = 1 signal evokes the most robust response in the neuron, as indicated
by the tall peaks, which reflect repeatability of the response when the same stimulus was
presented. The solid lines represent the actual neural responses, and the dot lines represent
the predicted responses based on the models recovered respectively from each class of signals.
The reliability of the neuronal responses for 1/f signal also lead to better predictability of its
recovered kernel. Coding efficiency (D) and information transmission rate (E) both exhibit
a preference for the 1/f correlational structure. Adapted from Yu, Romero and Lee (2005).

Neural coding of statistical correlations in natural scenes

In natural scenes, there are a variety of correlation structures. First, at a single point
in space, a visual signal is correlated over time. Second, different aspects of the visual
signal, such as luminance and binocular disparity, can be correlated due to interaction of
luminance and depth in three-dimensional (3D) scenes. Third, visual signals are correlated
across space when they arise from a single surface. How are these correlations encoded in the
nervous system? We found two potential mechanisms: (1) tuning properties of individual
neurons, and (2) connectivity among neurons. Neurons develop tuning properties that can
capture correlation structures in the feed-forward input at the earliest stages of processing,
and correlation in the input signals will likely exhibit correlation in the tuning properties
in the different feature dimensions. Spatially and temporally correlated visual events are
likely encoded in recurrent (horizontal and feedback) connections between neurons. On a
conceptual level, it might be meaningful to consider the former process as extracting unified
information from earlier areas and the latter process as unifying associated representations
in the same visual area.

Encoding correlation structures in tuning properties
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Neurons are often characterized by tuning properties, i.e. whether they exhibit preferences
for certain stimulus parameters along a certain feature dimension. To explore whether
and how a correlation structure in visual features is encoded in the tuning properties of
neurons, we have performed two neurophysiological experiments in primary visual cortex
(V1). The first experiment concerns correlation structures with respect to time, and the
second experiment concerns a correlation structure between depth and luminance cues at a
single point in space. In these experiments, as well as all other physiological experiments
presented in this article, the recordings were done on awake behaving monkeys performing a
simple fixation task using multiple electrodes, each isolating single-unit activity of individual
neurons.

Natural signals often exhibit similar statistical properties at all scales, and are thus described
as having self-similar, or fractal, structure. One consequence of this scale-invariance property
is that natural signals typically have a power spectrum that obeys a power-law, of the form
1/fβ (Ruderman and Bialek 1996, Potetz and Lee 2006). In the time domain, natural signals
are characterized by a 1/f power spectrum, meaning that the total amount of power in each
octave of frequency is the same for every octave. We evaluated how V1 neurons respond to
noise signals with different power spectra, i.e. white noise (β = 0), pink or natural noise
(β = 1), and brown noise (β = 2) as shown in Figure 1A and 1B. We found that signals
with β = 1 were preferred over white and brown noise in the robustness and reliability
of the response and in the amount of information about the stimulus transmitted in each
spike (Yu et al. 2005). Figure 1C shows β = 1 signals generated more repeatable responses
(higher peaks in the peri-stimulus time histograms PSTH). Figures 1D and 1E show that
the coding efficiency and information transmission rate are highest for β = 1 signals. In
a related experiment in the auditory system, Garcia-Lazaro et al. (2006) discovered that
auditory neurons are also sensitive to this correlational structure. These findings suggest
that neurons in early sensory areas are adapted for this important temporal correlation in
natural signals, which might be a key factor underlying why neurons prefer natural stimuli
over other stimuli as some studies have earlier observed.

In a second experiment, we tested a prediction generated by the discovery of an inverse
correlation between depth and luminance in 3D natural scenes. Using co-registered 2D
color images and laser-acquired 3D range data, Potetz and Lee (2003) found that there is an
inverse correlation (r = -0.18) between values of luminance and the depth of the camera from
the point of observation. That is, brighter regions in an image tend to be nearer. Centuries
ago, Leonardo da Vinci observed a perceptual phenomenon whereby brighter surfaces are
perceived to be nearer, all other things being equal. This observation has been exploited by
artists in paintings. This study therefore provides an ecological reason for such perception,
demonstrating that correlational structures in natural scenes might be explicitly encoded as
priors in our visual system. These correlational structures, we found, arise primarily from
shadows in natural scenes (e.g., farther surfaces are more likely to lie within shadow) and
turns out to be especially useful information for inferring depth from images (Potetz and
Lee 2006) (Figure 2).

How are correlation structures between visual cues encoded in neurons? We know that
neurons in V1 are tuned to binocular disparity (Cumming and DeAngelis 2001)–e.g., some
neurons prefer near surfaces while other neurons prefer far surfaces relative to the fixation
plane. Do neurons tuned to nearer surfaces also tend to prefer brighter surfaces? Indeed,
we found this tendency to be the case at the population level in V1 (Potetz et al. 2006).
Many neurons exhibit sensitivity (tunings) to both visual cues simultaneously. Among a
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A.  Color image                                                                      B.  Range image

C,

D.

E.  Original image          F.  Low-resolution               G.   High-resolution
                                                   3D surface                            3D surface inferred

Figure 2: A: An example color image from our database. B: The corresponding range image.
In this image, due to the shadowing in the rocky cliff face, the correlation between depth
and pixel intensity is −0.37. C: Typical correlation between an intensity pixel and the
surrounding range pixels across patches centered at intensity pixel’s location. On average,
the correlation between image intensity and range value at the same location is r = −0.18 –
as shown by (13,13) in the graph. D: Given two pixels, the brighter pixel is usually closer to
the observer. E: An example image from our database. F: The corresponding range image
was subsampled to produce a low-resolution depth map, and then (for illustration purposes)
rendered to create an artificial, computer-generated image. Next, a computer algorithm was
used to learn the statistical relationship between the low-resolution 3D shape of (F) and the
2D image of (E). This includes both shading and shadow (nearness/brightness correlation)
cues. In this example, shadow cues were stronger. This learned statistical relationship
was then extrapolated into higher spatial frequencies to estimate the high-resolution 3D
shape, shown in (G). Some high resolution depth features are ‘hallucinated’ by the algorithm
correctly such as the cross on the sail, and the details on the globe. Adapted from Potetz
and Lee (2003) and Potetz and Lee (2005).

population of 47 neurons, there is a strong trend for near-tuned cells to prefer a bright
surface versus a dark surface with a statistically significant correlation between the dispar-
ity and brightness preference of r = −0.39 with p = 0.01 (Figure 3). Thus, correlation
between the two cues in natural scenes is reflected in the joint tunings to the two cues at
the population level. This is the first physiological finding relating the tuning curves of
individual neurons across two different depth-defining cues, and might be the physiological
underpinning of psychophysical studies that revealed the interaction of different visual cues
on depth perception (Moreno-Bote et al. 2008).

The idea that the tuning properties of neurons are capable of capturing correlation struc-
tures in natural scenes is by no means new and is in fact the fundamental assumption for a
number of seminal theoretical studies on the emergence of simple cell receptive fields (Ol-
shausen and Field 1996), and of tuning properties of retinal ganglian neurons (Atick and
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Figure 3: Testing for a correlation between disparity and luminance preference in V1. A:
Random dot stereogram (RDS) stimulus. B: Light and dark spot stimuli. C: Scatter plot of
brightness preference (light response - dark response)/(light response - dark response) versus
disparity preference (disparity with peak response). D: Sample disparity tuning curve. E:
Sample contrast response curve for light and dark polarity. From Potetz, Samonds and Lee
(2006).

Redlich 1992). However, all these theoretical studies are ad-hoc, primarily providing expla-
nations on well known existing physiological findings on neurons’ tuning properties. Our
neurophysiological experiments are motivated and predicted by scene statistics results, and,
for the first time, yielded brand new neurophysiological evidence that is consistent with the
theoretical assumption/prediction on neural encoding of correlational structures.

Encoding competitive constraints in neuronal interaction

While visual features or visual cues co-occurring at the same spatial regions can be encoded
in the tuning properties of the neurons, as in the case of simple cells encoding the correlated
activities of LGN neurons aligned in a particular orientation, some visual entities cannot
occur simultaneously or are mutually exclusive. For example, given an observed surface,
the hypothesis that it is at a particular depth is incompatible with the hypothesis it is at a
different depth. This scenario requires neurons representing different hypotheses to compete
with each other in explaining the observed image patch. The early computational model
for stereopsis proposed by Marr and Poggio (1976) required a uniqueness constraint that
stipulates that neurons coding for different disparities at the same location should inhibit
one another. The independent component (sparse coding) explanation for the emergence of
of simple cells’ receptive fields (Olshausen and Field 1996) also requires similar competitive
interaction. Later on, we will discuss how this uniqueness constraint is also relevant to
object representations. Curiously, little is known about the competition between neurons
in a cortical hypercolumn that are analyzing information within the same spatial window.
To understand the neural implementation of mutual exclusion or the uniqueness constraint,
we have carried out an experiment to study the interaction of neurons of different disparity
tunings with spatially overlapping receptive fields.

In this experiment, while the monkeys fixate at a spot on a computer monitor, different depth
planes rendered in dynamic random dot stereograms were presented in a 5 degree diameter
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aperture for 1.2 seconds, one at a time. These are the stimuli typically used to measure the
disparity tuning of a neuron. The novel component of our study was that we recorded from
multiple neurons simultaneously, using multiple electrodes or a single electrode, and studied
their interaction. The separated spikes from single electrodes or from two different electrodes
recording from neurons with overlapping receptive fields were subject to cross-correlation
analysis. Interaction strength between neurons is typically measured by cross-correlating
spike trains, a measurement that can be positive or negative, reflecting the likelihood of a
spike from one neuron coinciding with a spike from the other neuron. Correlation between
two neurons’ spike trains is first computed, and then the part of the the cross-correlation
that can be attributed to the firing rate covariation of the two neurons is discounted, and
finally the estimate is normalized by the firing rates or variation in firing rates. That is, if
the interaction strength between a pair of neurons is fixed, this measurement will remain
constant irrespective of the stimulus being presented and how the neurons respond to the
stimulus. In the end, a strong positive or negative cross-correlation suggests that the neurons
are connected in some manner within the cortical network.

We found that neurons with very different disparity tunings exhibited negative correlation
(competitive interaction) in their spiking activity (Samonds et al. 2007, Samonds et al.
2008). Figures 4A,D show the receptive field locations and tuning relationships of a typical
pair of neurons that exhibit competitive interaction. Figures 4B and 4C show the temporal
evolution of neuronal interaction over time as a function of the depth as defined by the
disparity of the presented random dot stereograms. These graph are population results,
averaged across all competitive pairs in the population, aligned by the negative correlation
peaks. Figure 4B shows a significant early negative correlation component (competitive
interaction), superimposed on the baseline correlation, between the two neurons. This
is most severe at where their disparity tunings diverge the most (Figure 4E, 4C). This
interaction is accompanied by the emergence of the disparity tuning and the sharpening
of disparity tuning over time(Figure 4F), i.e. an improved estimate of the image depth.
These neurons that exhibit competitive interaction are different not only in their disparity
tunings, but also in motion direction tuning as well. It remains to be resolved whether
neurons common in some cue dimension but different in other cue dimensions would still
engage in competitive interaction exclusively, or whether the interactions between these
neurons are cue-dependent.

This is the first piece of evidence that neurons analyzing the same spatial location engage in
competitive interaction that is consistent with the uniqueness constraint during stereopsis
computation (Marr 1981, Marr and Poggio 1976). It is well known that inhibitory connec-
tions and suppressive interactions are restricted to be local (Lund et al. 2003), but earlier
studies tend to suggest that these inhibitions are not specific to stimulus or the cells’ tuning
properties (Das & Gilbert 1999; Bosking et al. 1997; Shapley et al. 2003). Our results
suggest the competitive interaction does depend on the tuning properties of the neurons. A
uniqueness constraint however implies a winner-take-all scenario among the neurons, which
might not be a desirable property in most cases. It is more desirable to encode a posterior
probability distribution of the different hypotheses using the neuronal population at each
location to enable a more robust inference and representation. This is analogous to beliefs
at a node in a graphical model of a Bayes net (Rao 2004, Potetz and Lee 2008, see also
Knill and Pouget 2004). The fact that neurons will continue to respond to suboptimal fea-
tures also suggests the uniqueness constraint is probably a soft one. We will in later section
discuss the role of such constraint in object representations.
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Figure 4: Local competitive interaction. A: Receptive fields, preferred orientation, and
direction of motion (white) overlaying the RDS stimuli for an example competitive pair
of neurons (red square is fixation point). B: Population summary of interaction strength
(correlation) versus time and disparity for 17 neuronal pairs with antagonistic disparity
tuning. C: A section of B noted by the dashed line. D: Disparity tuning for neuronal pair
described in A. E: Population summary of disparity tuning for same pairs described in B. F:
Population summary of sharpened disparity tuning after competitive interaction described
in B. Adapted from Samonds et al. (2008).

Encoding spatial correlations in neuronal connectivity

Our next question concerns the neural encoding of correlated events across space, such as the
co-occurrence of features belonging to a surface or parts belonging to an object at different
spatial locations. The standard argument is that neurons coding for events that occur to-
gether simultaneously across space can lead to the formation of specific neurons downstream
that encode this joint event. Recursively repeating this principle along the visual hierarchy
can conceptually allow the formation of codes for features, subparts, parts, and objects in
a compositional architecture. In order to avoid a combinatorial explosion in the number of
codes required at the higher level, Geman (2006) proposed that higher order structures or
representations can be dynamically constructed by composing reusable parts at each level
along the visual hierarchy. The parts themselves are meaningful entities, learned from natu-
ral scene statistics, and are reusable in an enormous assortment of meaningful combinations.
Such compositional hierarchies provide structured representations over which a probability
distribution may be defined and used as prior models in scene interpretation. The key
concept is that frequently co-occurring features are encoded explicitly by neurons, while
occasionally co-occurring features are encoded transiently through the correlated activities
or synchrony of the existing neurons.

There is indeed some evidence that the correlated activity or functional connectivity between
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V1 neurons across space is dynamic and stimulus dependent. A number of multi-electrode
neurophysiological studies have shown that the interaction between a pair of neurons is
dynamic (Singer 1999, Samonds et al. 2006, Samonds et al. 2007, Kohn and Smith 2005).
The main finding emerging from these studies is that the interaction strength (also termed
effective or functional connectivity, spike correlation, and synchrony) between a pair of
neurons is not fixed but varies as a function of the stimuli and stimulus context presented
to the neurons in relation to the tuning properties of these neurons, and is typically greatest
at the peak of the product of the two tuning curves. Furthermore, the vast majority of
measurements of interaction between neurons has been positive or facilitatory in nature.
Thus, these findings on stimulus-dependent correlated activities of V1 neurons can reflect
such dynamic functional connectivity suggested by Geman.

Although Geman’s composition machine is mediated primarily by bottom-up feedforward
connections, in the visual cortex, besides these, there are vast numbers of horizontal and
feedback connections. What are the functional roles of these recurrent connections, particu-
larly the horizontal connections? Most of extra-classical surround effects neurophysiologists
have observed are suppressive in nature. Thus, lateral inhibition or surround suppression
are thought to be the dominant action of the horizontal connections, notwithstanding 80
percent of the synapses on the horizontal collaterals are excitatory in nature. We propose
that the horizontal connections are implementing the constraints on how the different parts
across space can vary relative to one another when the parts are being dynamically com-
posed into a larger entity. In computer vision, this is modeled in terms of Markov random
field models which allow information from a node’s surrounding region to influence its in-
terpretation of the stimulus in its analyzing window. A node here can be represented by
a population of neurons analyzing the same spatial location. The connections define the
statistical distribution of the relationship between different features or parts across space –
how the distance and relative orientation between the different parts tend to vary in natural
scenes, and what range of variation is permitted when higher order structures are composed
and interpreted.

The simplest constraint used in computer vision for surface inference and segmentation is
the ubiquitous surface smoothness constraint. That is, surfaces tend to be smooth locally.
More precisely, the variation in the surface orientations might follow a statistical distribution
such as a Gaussian or a Laplacian distribution. This constraint arises naturally from natural
scene statistics. In our study of co-registered range and color images, we have examined
the nature of this smoothness constraint (Potetz and Lee 2003). Figure 5A shows the
correlation between pixels in range data as a function of distance, and Figure 5B shows the
correlation between pixels in the image data as a function of distance. Both show some
kind of exponential decay in correlation as a function of distance that can be fitted well
with Laplacian distributions. The decay in correlation is significantly slower in the range
data than in the luminance data, reflecting the fact that surfaces tend to be smooth, and
that variation in surface depth was less than the variation in the luminance patterns or
markings on the surface. This predicts that neurons with similar disparity tunings or other
feature tunings should interact cooperatively, and their interaction strength should drop off
exponentially as a function of distance according to scene statistics.

To test this hypothesis, we carried out an experiment to measure how V1 disparity-tuned
neurons interact across space when presented with different depth planes as rendered by
dynamic random dot stereogram, one depth at a time. This is in fact the same experiment
described in our earlier discussion on the uniqueness constraint, except now we are consid-
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Figure 5: A: Correlation between intensity at a center pixel (13,13) and all the pixels in
the same intensity patch, over all image patches (e.g. Figure 2A). B: Correlation between
range at a center pixel (13,13) and all the pixels in the same range patch, over all image
patches (e.g. Figure 2B). C: Peak in the correlogram of the activities of a pair of neurons
that exhibit positive correlation as a function of distance between the receptive fields of the
two neurons in visual space in degree visual angle.

ering the interaction between neurons with spatially distinct receptive fields. We observed
significant positive cross-correlation of the spike trains for a variety of neuronal pairs, but
most noticeably for neurons with similar disparity tunings. Excitatory interaction, as indi-
cated by positive correlation in neural activities, extends a greater distance (a few mm in
cortical distance) than the more local inhibitory interaction discussed earlier.

Figures 6A and 6D show the receptive field locations and disparity tuning curves of a typ-
ical pair of neurons exhibiting excitatory interaction. The neurons typically have spatially
distinct receptive fields and very similar disparity tuning. The rest of the Figure 6 shows a
population average of the interaction between 41 similar pairs of neurons, aligned by their
peaks of strongest positive correlation, revealing that the strongest interaction occurred at
the disparity where the two tuning curves intersect, i.e. shared the most in common. There
appeared to be temporal dynamics in the neuronal interaction: the earlier phase (the first
100 msec) is non-stimulus specific, while the later phase (150-400 msec) is stimulus spe-
cific. The early phase in the correlated responses is likely due to the simultaneous burst in
neuronal responses due to stimulus onset. That this early correlation tends to be strongest
for stimuli that both neurons prefer the least also suggests that this correlation might arise
from a common suppressive input shared by both neurons, presumably from neurons which
prefer that disparity, as a manifestation of the uniqueness constraint (see also Figure 4).
The second phase of strong and positive interaction likely reflects mutual facilitation, as
it occurred only when the stimulus is precisely of their shared preferred disparity (Figures
6B, 6C), potentially reflecting the implementation of the continuity constraint. The initial
competitive interaction is accompanied by a development of disparity tuning, while the later
interaction is accompanied by further sharpening of the disparity tuning curves (Figure 6F).
Figure 5C shows preliminary results that indicate the strength of positive correlation be-
tween neurons with similar disparity tunings dropped off with distance rather rapidly. More
data however are required to allow a quantitative comparison with the prediction of the
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Figure 6: Cooperative interaction. A: Receptive fields, preferred orientation, and direction
of motion (white) overlaying the RDS stimuli for an example cooperative pair of neurons.
B: Population summary of interaction strength (correlation) versus time and disparity for
41 neuronal pairs with similar disparity tuning. C: Sections of B noted by the corresponding
dashed lines. D: Disparity tuning for neuronal pair described in A. E: Population summary
of disparity tuning for same pairs described in B. F: Population summary of sharpened
disparity tuning after competitive interaction described in Fig. 4B (blue) and cooperative
interaction described in B (red). Adapted from Samonds et al. (2008).

scene statistics.

The observation that correlation in neuronal activities is a function of disparity tunings of
neurons (Samonds et al. 2007) extends the earlier observation based on orientation tunings
(Ts’o et al. 1986, Singer 1999, Samonds et al. 2006) to the depth domain. It is worth noting
that the correlation of neural activities discussed here is a measure computed within 25 to 50
msec window, distinct from the so-called fast-time synchrony (correlation within a 1-5 msec
window) or slow-time spike count correlation (correlation within a temporal window ranging
from 500 msec to seconds). Slow spike count correlation might arise from fluctuation of the
states of the system such as attention, arousal or other mechanisms. Fast-time synchrony
is important for understanding one-to-one neuronal connectivity, and might be important
for von der Malsburgh’s ‘binding by synchrony’ concept. It is however not certain whether
fast-time correlation is necessary for Geman’s compositional hierarchy. The intermediate
time correlation we observe is informative of the dynamics of neuronal interaction during
computation, and might be sufficient for generating the higher order codes. This hypothesis
however needs to be confirmed by computational and neurophysiological experiments.

11



The surface smoothness constraint arises from the fact that visual cues (texture, disparity,
color) tend to be smooth and continuous when they belong to the same surface. The co-
occurrence and correlation of these visual cue events can lead to the formation of connections
between neurons with similar tuning properties across space by classical Hebbian learning
mechanisms. The contour version of this constraint is the contour smoothness constraint,
or the association field, which has been demonstrated in both psychophysical experiments
(Field et al. 1993) and scene statistics studies on the statistical distribution of luminance
edge signals across space (Geisler et al. 2001; Sigman et al. 2001; Elder and Goldberg 2002).
Such an association field has been shown to be useful for contour completion (Grossberg and
Mingolla 1985, Williams and Jacobs 1997) and might be part of the underlying mechanisms
for illusory contour representation in the early visual cortex (Lee and Nguyen 2001). Von
der Malsburg and colleagues have shown that such facilitatory connectivity patterns can be
learned by Hebbian learning based on the moving edges of objects in video in an unsuper-
vised manner (Prodohl et al. 2003). Our evidence (Samonds et al. 2007, Samonds et al.
2008) on a neural substrate for a smoothness constraint in depth suggests that the associ-
ation field concept might generalize beyond contours to statistical priors and Gestalt rules
for organizing surfaces, and furthermore to statistical constraints for organizing configural
parts of objects in object representation. In summary, our conjecture is that horizontal con-
nectivity is not simply for mediating surround inhibition. Rather, it can enforce statistical
constraints on the spatial and possibly temporal relationships between parts of surfaces and
objects to facilitate the elimination of improbable solutions in generating the higher order
representations, and to resolve ambiguity during perceptual inference.

Computational implications on cortical object representation

In the last section, we have discussed evidence for three major neural mechanisms for en-
coding statistical priors in the natural scenes: 1) feedforward convergent connections for
encoding correlational or conjunctive structures between different visual cues/features oc-
curring at the same spatial location in neuronal tuning properties; 2) competitive interaction
among neurons at the same spatial location for encoding the uniqueness constraint or en-
forcing mutual exclusiveness of hypotheses; 3) cooperative recurrent (lateral and feedback)
connections to encode spatial correlations of features or the distribution of the variations
among their parameters. As anatomical architecture is fairly uniform across the different
visual areas in the hierarchical visual cortex, these three fundamental mechanisms are likely
repeated in each visual area to generate a hierarchy of priors to bring about hierarchical
Bayesian learning and inference (Lee and Mumford 2003).

Even though our neurophysiological experiments, as discussed, have focused on the early
visual cortex and on the issues of surface and depth inference, the lessons we learned should
be relevant to understanding computational architecture in the higher visual areas such as IT
(inferotemporal cortex) for object representation and analysis. The main question we asked
is: what is the functional role of the horizontal connections in higher visual areas such as
V4 and IT, particularly in the context of object representation and inference? Interestingly,
almost all of the popular neural models on object representation construct a hierarchy
primarily based on convergent feedforward connections (Fukushima 1980, Foldiak 1991,
Riesenhuber and Poggio 1999, Wallis and Rolls 1997, Wiskott 2002, Geman 2006). Lateral
connections, if considered at all in these models, are used to implement competition or
inhibition within each level based on the prevalent neurophysiological reports on surround
suppression. We have provided evidence in the last section that lateral connections in the
early visual areas could be encoding spatial constraints such as the smoothness prior seen
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in popular models in computer vision like Markov random fields. In higher visual areas,
receptive fields become larger and larger as one traverses up the visual hierarchy, 4 times
wider at V4 relative to V1 at the same eccentricity, and covering much of the visual field at
the level of IT. IT neurons have been shown to be selective to specific views of objects but
by and large invariant to their positions and scale. The cortical layout of IT is no longer
retinotopic as in early visual areas, but exhibits some clustering among represented objects.
Thus IT’s horizontal connections must be encoding some relationships between objects that
are no longer defined in terms of space. What could these relationships be?

IT horizontal connections for encoding temporal association of views

Our conjecture is that horizontal connections between IT neurons can be used to encode
temporal association of different views of objects in our visual experience. These connections
can serve two purposes: 1) achieving invariance with flexibility, 2) generating predictions
during imagination and inference.

Learning features that are invariant within each class while maintaining enough specificity
to allow discrimination between different classes is the central issue in object representation.
An object’s appearance can change dramatically in different poses, perspectives and lighting
conditions. How does the visual system learn to recognize an object being the same despite
its multitude of possible views?

In our visual experience, the world is dynamic either due to changing illumination, object
shape deformation, or relative motions of objects in the scene. Under these conditions,
the temporal contiguity of visual events offers a powerful cue for our visual systems to link
the different appearances of an individual object together as its appearance changes. That
is, most objects present in one instant will likely be present in the near future. Any visual
pattern that can be measured for specific object will likely exhibit relatively smooth changes
within small-to-medium time intervals. A dining couple in a restaurant scene might tilt
their heads, smile, and speak, but neither is likely to disappear or spontaneously transform
into another object. This principle of persistence or smooth variation is either implicit or
explicit in a wide variety of computer vision tasks, especially tracking. Thus, by observing
the dynamic behavior of objects in a visual scene over time, one can develop a set of
dynamically linked observations of the objects themselves, which in turn can inform the
construction of equivalence classes of visual patterns representing the same object.

The idea that temporal correlation of visual events can promote invariance learning has
been explored by a number of earlier neural models (Foldiak 1991, Wallis and Rolls 1997,
Wiskott 2002), even though learning from video is still at its infancy in computer vision.
The earlier neural models however used a feed-forward network to learn the invariance based
on gradual convergence of inputs from neurons coding different views onto the downstream
neuron. Typically, a downstream neuron learns to associate two visual stimuli appearing in
rapid succession as same based on the trace-learning rule, which stipulates that lingering
activity of a downstream neuron responding to a first stimulus will potentiate its synapses
to respond to a second stimulus as well, provided the two stimuli appear within a short time
window (300-500 msec). A Hebbian-like mechanism will eventually cause the cell to respond
equally well to both stimuli after repeated viewings. The disadvantages of such feedforward
networks are threefold: first, specificity of a particular view (pose) of an object is lost when
multiple views are converged into a single entity, so that a neuron coding an object in an
invariant manner will necessarily have no idea of the pose being seen; second, a hierarchy
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Figure 7: A: Diagrammatic depiction of linking together object views into view based ob-
ject models with probabilistic transitions between views (see text for details). C: Sparsity
structure of a Markov transition matrix over a collection of object views: blocks along
the diagonal correspond to different objects. B, D: Connectivity between some views of
two learned objects. Transitions in matrices are created by marginalizing out other object
views; the intensity map is nonlinearly compressed to show detail.

with many layers is required, as invariance has to be achieved gradually by combining a few
views at a time at each level; third, these feedforward networks cannot be used to predict
what views will be seen next for the purpose of furnishing prediction to facilitate inference.

While the trace-learning rule might be useful for associating events based on convergent
input, we argue here that the spike-timing dependent plasticity learning rule (Markram et
al. 1997) might be useful for learning a lateral association network in each visual area based
on temporal contiguity of visual events: as the synapses between a pre-synaptic neuron
representing one view, and a post-synaptic neuron representing a subsequent view will be
reinforced during visual experience. The lateral connections in such a network link the
different views of an object in a graph, which is disconnected from members or nodes of the
graphs representing other objects.
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Figure 7A illustrates the essence of these ideas. Here, views of two distinct objects (per-
sons) are arranged in a simulated perceptual space, where distances between views reflect a
measure of low-level perceptual similarity. There is considerable overlap between these two
objects within the space: frontal views of the two different persons’ faces are more similar
to each other than the frontal view and the profile view of the same person. The horizontal
connections, which can be considered as transition edges in a hidden Markov model, offer
new ways to measure similarity based on the temporal correlations of the views observed
in our experience. For example, we might propose that the similarity between two differ-
ent views is the marginal probability of making transition from one view to the other in a
fixed number of steps. The similarity between views (e.g. frontal views) that are weakly
connected or not connected by any path is thereby zero or nearly zero, even though they
resemble each other in low-level image space.

We have implemented an unsupervised learning system that takes many short clips of videos
with objects exhibiting a variety of pose changes and learns the horizontal connections based
on the temporal contiguity and the perceptual similarity of the visual events. Figure 7
presents the horizontal connection matrix among 209 views learned from four different ob-
jects the system observed. This is essentially a transition matrix of a hidden Markov model
with each state representing a particular view. The sparsity structure of the transition ma-
trix for the learned graph connecting these views appears in Figure 7C; it exhibits a mostly
block-diagonal structure corresponding to the four objects, which indicates that transitions
between two different objects are unlikely (top left two blocks) or impossible (bottom right).
For two of the objects, we have selected 10-member subsets of the learned views (indicated
by the frames from which the view models were trained) and created probabilistic transi-
tion matrices for these subsets by marginalizing out other views from the Figure 7C matrix:
the results appear in Figures 7B and 7D and exhibit a sensible connectivity structure for
the chosen views (elements further from the diagonal, corresponding to transitions between
non-adjacent views, are darker).

These networks might offer some advantages over the earlier models based purely on feed-
forward convergence in invariance learning. First, when the node coding for one view is
activated by bottom-up input, the activation will spread across the network along the hor-
izontal connections. The activation of the entire network in the next moment represents a
probability distribution over what the input might become in the future. This activation
spreading with its probabilistic interpretation can facilitate inference by potentiating the
sensitivity of neuronal detectors to particular incoming stimuli. IT neurons related by such
a graph preserve the specificity of the ‘view’ they are coding, but can also spread predic-
tions about the incoming visual stimulus. These predictions specify potential appearances of
whole objects and salvaging the interpretation of ambiguous and obscured stimuli. Second,
these networks of facilitative, lateral connections offer a more efficient, one-layer mecha-
nism for invariance learning: rather than gradually building invariance within a hierarchy,
strongly connected components give rise to patterns of propagated co-activation within en-
sembles of views that together, collectively represent an object. A view-invariant neuron
need only “tap” a few locations in this network of view-selective neurons with sparse, long-
range connections to detect this co-activation. In addition to the improved efficiency of this
method when compared to models with gradually converging layers, this account may also
draw support from the fact that few intermediate view-invariant neurons have been found.

These lateral association networks are similar to an aspect graph in computer vision, with
some differences. In a traditional aspect graph, nodes reflect topologically identical con-
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figurations of image components; here, a node represents a range of appearance for which
the model associated with the node, which characterizes an object view as configurations
of component parts, is sufficiently accurate. Here, each node is a view of a face, and other
nodes are different views of the face of a same person that this view is likely evolves to.
The lateral connectivity describes edges in the graph whose strengths reflect the probability
of the transitions between the different views of a person. Interestingly, Tanifuji and col-
leagues (Wang et al. 1996) found that neurons coding different views of a face are arranged
in spatially adjacent cortical locations in the IT cortex.

From a statistical learning perspective, the hidden Markov model (HMM) characterization
of object representation just described presents several interesting challenges. Like the
mammalian visual system, we would like a computational mechanism for learning such
dynamically-linked view-based object models to flexibly infer both how many objects exist in
its visual world and how many views are necessary to model the objects. The latter problem,
which is equivalent to inferring how many states an HMM needs to model data, has been
addressed by recent “Infinite HMM” techniques based on the hierarchical Dirichlet process
from non-parametric Bayesian statistics (Beal et al. 2002, Teh et al. 2006). To tackle the
first issue, we are developing an extension of these models embodying the notion that views
of the same object are temporally clustered in our visual experience. The key to this model
is a prior that favors a nearly block-diagonal structure in the transition matrix describing
the HMM’s dynamic behavior. Each object’s ensemble of views thus corresponds to a block
of states within the model, and transitions between views in the same block are generally
much more likely than transitions between views in different blocks. A particular view is
assigned to one and only one block, and as such visually similar views of separate objects will
be modeled with two distinct, object-specific states—a joint representation of appearance
and identity that permits finer predictions of future appearance through conditioning on
the knowledge of what the viewed object actually is. Finally, as with the views, the model
flexibly accommodates varying numbers of objects using similar non-parametric Bayesian
machinery.

V4 horizontal connections encoding spatial relationships between parts

In the above discussion, we have assumed IT neurons encode specific views of objects for
simplicity in exposition. Such a view-based scheme might require explicitly storing a huge
number of views of an almost infinite number of objects and their parts. Geman (2006)
suggested that one can have a hierarchy of composable and reusable parts to construct
object representation dynamically to avoid this combinatorial explosion problem. Each
view neuron, rather than encoding an image, should really be encoding an ensemble of
parts, with specific spatial configural relationship constrained by the horizontal connections
one visual area below. Each of these parts in turn represent a cluster or distribution of
appearances of that part, computed by some invariance transforms. The parts themselves
are meaningful entities, learned from natural scene statistics and are reusable in different
combinations for representing the multitude of objects.

Again, as in IT, the temporal association of the parts of objects can be learned from our
dynamic visual experience and represented explicitly in intra-areal (within-area) connections
in the intermediate visual areas such as V4 in the form of a Markov transition matrix. This
matrix will produce predictions on how a given appearance of a part will evolve over time
to produce a more invariant object representation using ‘fuzzier parts’.
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Figure 8: A demonstration example of the method for learning the appearance dynamics of
low-level image features. A: The input video contains a banana and a toy hippo rotating in
space. Sparse, local image features of various scales are detected in each frame. Descriptors
for those features are simply the 15x15 pixel, 3 color image patches themselves. Next, K-
means is run on a random assortment of extracted descriptor patches to yield a 300-bin
discretization of the feature descriptor space; cluster centers appear in B. C: Features are
tracked between video frames (left). Discretized descriptors of tracked features yield the
appearance transitions at right, which then inform the Markov transition matrix whose
sparsity structure appears in D. E: L1 diffusion distance comparison of one image feature
bag-of-words histogram (Target) with two others. The banana histogram becomes similar
after a few diffusion steps; the hippo histogram remains distinct.

Figure 8 illustrates these ideas. Let us assume V4 neurons encode fragments and corners
with some positional slack within relatively large receptive fields. The Markov transition
matrix is learned by first tracking the parts over time based on feature similarity and
spatiotemporal proximity, then quantizing the stimulus space into clusters of distinct part
appearances, and finally building links between corresponding parts that are sufficiently
different in appearance. In this demonstration example, our system analyzed a video of
a banana and a hippo moving around in a baby mobile (Figure 8A). The part-features
of the moving objects are automatically learned and partitioned into 300 discrete part
feature clusters using K-means (Figure 8B). These part-features are tracked over time based
on spatial and temporal contiguity of the parts, as shown in Figure 8C. This allows a
Markov transition matrix between the features to be built (as shown in Figure 8D). Note
that this matrix is much less block diagonal than the transition matrix for the object-view
representation above, since parts are more local and less object-specific.
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Multiplying the transition matrix with the input observation (a delta function in the 300-
tuple vector, or more generally a data likelihood function) gives you the predicted distri-
bution of hypotheses of part appearances in the next time step. This prediction serves as
a prior distribution for visual interpretation of the incoming image. Successive multiplica-
tion of the observation by the matrix simulates an experience-based diffusion process that
predicts distribution of the possible appearance at different time points in the future. The
diffused representation is more robust when matching the input representation to the stored
representation for the following reason. For simplicity, let us consider an object’s view is
represented by a histogram of the occurrence frequency of a certain set of features. Without
diffusion, only identical views will have identical feature count histograms. A slight change
of view on an object will produce a drastically different histogram. Blurring the histogram
using this temporal association matrix will create a histogram that is more tolerant against
variations in the appearance of the object, so that the incoming view does not have to be ex-
actly the same as any of the stored views in order to be recognized. Figure 8E shows the L1
distance (sum of the absolute difference between each bin for two histograms) comparison of
one image feature histogram (Target) with two others, after some blurring with the Markov
transition matrix. The banana histograms become more similar to each other after a few
diffusion steps, while remaining distinct from the hippo histogram. This illustrates how
such association of parts derived from observed dynamics can increase invariance for object
recognition by integrating information about the temporal association of part appearance
through the relatively local facilitatory connections between the parts.

The mathematics behind such experience-based metric for data similarity have recently been
studied by Lafon and Lee (2006), among others. Conceptually, the idea is also related to
Ullman’s features of intermediate complexity (Ullman et al. 2002) in which fuzzy interme-
diate representation is shown to promote a certain degree of invariance and slack that can
promote object recognition. However, our proposed blurring with HMM is more general
and might be more sensible, as it reflects the invariance that is learned based on temporal
association of visual events in natural scenes.

While we envision that the horizontal connections in IT encode temporally associated views,
we expect the horizontal connections in the earlier retinotopic visual areas such as V4 and
V1 to encode constraints about spatial relationships between the configural parts for rep-
resenting objects, as in the compositional AND/OR graphs in computer vision (Zhu and
Mumford 2006, Zhu et al. 2008). The temporal association matrix of the HMM model
described above will likely be represented by the connections within a local cortical neigh-
borhood such as hypercolumn. Interestingly, that would mean that within a hypercolumn
in the early visual areas, there will be inhibitory connections to enforce the uniqueness
constraint as well as facilitatory connections to enforce the temporal association prior.

In a recent hierarchical composition model proposed by Yuille and colleagues (Zhu et al.
2008), features and the spatial configural relationship between the features in a hierarchy
can be learned in an unsupervised manner from a set of unlabeled images that contain
the object to be learned based on the principle of suspicious coincidence and the principle
of competitive exclusion. The first principle dictates that proposals based on frequent co-
occurrence of a set of features, subject to some invariant transformation, across all the
images in the training set, will be learned as higher order feature while proposals based
on spurious co-occurrence of features that do not recur often enough will be considered
suspicious and eliminated. When co-occurring features come together to generate a higher
order proposal, these conjunctive features will undergo an invariant transform to map a
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class of conjunctive features to one higher order proposal according to some rules. The
invariant transformation is important as it is rather unlikely that identical image fragments
will be seen across a significant number of the images in the training set. The Markov
transition network discussed above can be one way to implement this ‘invariant transform’
by blurring each of the observed image fragments in an experience-dependent manner, but
other clustering mechanisms such as K-means clustering in our first example (Figure 7)
or as Zhu and colleagues’ (2008) clustering method are also reasonable. The competitive
exclusion principle suggests that multiple proposed higher order concepts will compete to
explain an image fragment represented to that level, and that only the one that provides
the best explanation across the entire training set will be chosen and remembered over the
others. Thus proposed, higher order features engage in the same competition as the disparity
neurons in V1 engaged in during depth inference under the ‘uniqueness constraint’. This
is also similar to the competition among the representations of the different objects (the
graphs or webs of views) for explaining each observed view during learning and inference,
as enforced by the block-diagonal prior in our extended Infinite HMM machine, discussed
above. It is important to understand that the competition interaction takes place during
both learning and inference, as learning requires inference at each level.

Summary and Future Directions

In this chapter, we present some of our neurophysiological evidence for how spatial and
temporal correlational structures in natural scenes could be encoded in neurons in terms of
their tuning properties and in terms of their connectivity. Some of these structures, such as
correlation between luminance and depth, and the spatial correlation of visual cues within a
surface, can serve as surface priors useful for robust probabilistic 3D surface inference. The
evidence on neuronal tuning to temporal correlation reflects neurons’ sensitivity to temporal
events, and is partly the inspiration for our conjecture on temporal association networks in
the visual cortex. While theories on the importance of correlation structures in shaping the
nervous system are long standing, there has been almost no direct physiological evidence
demonstrating neural encoding of correlations of natural scenes, particularly those resulting
from theoretical predictions, except for the work of Dan et al. (1996) on LGN. The findings
discussed here serve to strengthen those theoretical claims, as well as to reveal the diversity
of strategies for encoding correlation structures in natural scenes.

We found neural evidence in support of three basic mechanisms for learning and encoding
priors: (1) individual neurons’ basic tuning properties, likely based on feedforward connec-
tions, are sensitive to correlation structures in natural scenes – the principle of coincidence
conjunction, (2) neurons representing different hypotheses compete with one another to
explain the input from the same visual window of analysis – the principle of competitive ex-
clusion, (3) neurons with similar tunings tend to exhibit excitatory interaction with neurons
with similar tunings at the same spatial location or across spatial location, possibly encod-
ing temporal association and spatial co-occurrence of features respectively – the principle
of spatiotemporal association. These mechanisms or principles, to a first approximation,
have direct correspondence with the necessary and maybe sufficient computational mech-
anisms deployed in models that perform unsupervised learning of object representation in
hierarchical composition system (Zhu et al. 2008).

The general principle underlying all these mechanisms and principles is redundancy reduc-
tion or minimum-length description codes (MDL). Mumford (1992) had argued that visual
cortex encodes a hierarchy of efficient codes that minimize the redundancy in image descrip-
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tion (necessary for behavior) as a whole. During learning and inference, the representations
in a higher order area produce ‘hallucinations’ or ‘image hypotheses’ to earlier visual ar-
eas to explain away the bottom-up proposals they provide. Given the relative uniformity
in anatomical structures and computational architecture across the different visual areas,
we expect the mechanisms we observed in V1 for encoding spatiotemporal correlations are
relevant to understanding the strategies of the higher visual areas such as IT and beyond
for object and category representations.

However, while the three mechanisms discussed above are general, the functional roles of
horizontal connections in different visual areas might be different because of the difference
between neurons in these areas in terms of spatial and temporal tuning properties. We con-
jecture that the horizontal connections in early visual areas are enforcing spatial constraints
among features and parts, while those in IT are enforcing temporal constraints among views.
We envision the competitive interactions mediated by the vertical interactions within each
hypercolumn within each area to be enforcing the uniqueness or competitive exclusion con-
straint, but the facilitatory interactions mediated by the vertical connections within each
area are enforcing the temporal association constraint to generate prediction and invariance.
It is worth noting that both the vertical connections and horizontal connections in IT might
be shaped by temporal association, with vertical connections linking local clusters of views
that are similar to one another – views separated by short time span during learning, and
horizontal connections linking views that are more distinct. Diffusion among neurons in
the vertical column makes representation more fuzzy and robust, but competition among
these neurons will make view or pose interpretation more precise. This suggests that the
interaction between groups of neurons might be dynamic in nature, exhibiting facilitatory
or inhibitory interactions at different points in time. In our experiments, we did find the
interaction or the effective connectivity between neurons evolve and change over time with
an intermediate time scale of 30-50 msec. This dynamics reflects possibly the evolution
of neuronal interaction associated with the progression of perceptual computation. It also
provides some possible constraints on the time scale of interaction as well as the permissible
time frame of spike integration or coincidence for learning the higher order structures by
downstream neurons.

There are two new elements in our proposal for object representation that worth empha-
sizing. First, that lateral connections in IT can serve to encode the temporal association
of visual events (e.g. views). This organization allows the generation of predictions about
how an object would look over time to facilitate object recognition. We have argued that
this organization might be more efficient in terms of implementation in IT for achieving
invariance without losing specificity. Second, the implication of similar temporal associa-
tion networks in intermediate visual areas is that these can provide invariance transforms
on the parts or a experience-dependent measure for evaluating data similarity, which also
provide a more robust object representation for learning and inference. While many of these
ideas are still in the realm of speculation, they are nevertheless precise enough to be tested
experimentally.

The research described here represents only baby steps in our understanding of how scene
statistical priors might be encoded in the brain. Many questions and challenges along this
line of research remain unanswered. First, after demonstrating that neurons are sensitive to
these correlational structures, a logical next step is to understand whether and how these
sensitivities can be used effectively for learning and inference. In our opinion, developing
computational models that actually work is critically important for guiding neurophysio-
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logical experimental research for understanding the neural representations and mechanisms
underlying the solution of a problem. To this end, we have developed a computational
framework based on graphical models with efficient belief propagation algorithms that can
flexibly learn and incorporate a variety of priors, including higher order cliques in markov
random field, for depth inference (Potetz 2007, Lee and Potetz 2008). With this framework,
we have already produced state-of-the-art techniques for inference of 3D shape from shading
in Lambertian surfaces. It would be important to explore how the correlational structures
between depth and luminance images in natural scenes can be harnessed to improve shape
inference on non-Lambertian surfaces. However, incorporating too many priors or loops
in the model will cause efficiency, stability and convergence issues. Neurophysiological and
psychophysical investigation can help us to select the appropriate priors and representations
to use, which could be useful for overcoming these obstacles.

The AND/OR graph or hierarchical composition model of Geman (2006), Zhu and Mum-
ford (2006) and Zhu et al. (2008) provides an elegant computational framework for con-
ceptualizing feedforward and feedback connections in the visual cortex. Coming up with
experiments to test this class of models is an important challenge in neuroscience because
this framework offers an interesting perspective on how the visual system might operate
that is fundamentally different from the current feedforward hierarchical model (Fukushima
1980, Riesenhuber and Poggio 1999) or the popular conceptualization of feedback in terms
of attention mediated by biased competition (Desimone and Duncan 1995). In this chapter,
we have advocated the important role of encoding temporal association of visual events
at different levels of the cortical hierarchy for constructing invariant object representation.
Although neural modelers have long recognized the importance of coherent covariation and
temporal association in concept learning and invariant object representation learning, this
is a relatively unexplored territory in computer vision. As discussed earlier, we are develop-
ing a computational framework based on hierarchical dirichelet processes that can organize
video data into coherent view-based object classes based on temporal correlation of these
visual events (Stepleton et al. 2008). This effort might provide new insights to the amazing
cortical organization of visual information during learning and development.
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