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This paper presents a mathematical theory for understanding the computations involved in texture 
segmentation in the primary visual cortex. We propose that texture segmentation is a part of the early 
visual system's overall strategy to infer surfaces of objects in a visual scene. Based on this insight, 
we use the Bayesian inference paradigm to formulate the texture segmentation problem into a 
maximum a posteriori surface inference problem. The dynamical system for finding the optimal 
solution of this problem can be characterized by two concurrent and interactive processes: a gradual 
sharpening of the boundary signals and a simultaneous smoothing of the surface signals. The behavior 
of these dynamical processes was studied using both analytical and computational methods. We present 
some computational results and mathematical predictions. This theory suggests a novel framework for 
understanding the functional roles of the complex cells in the primary visual cortex. 

Texture segmentation Surface interpolation Bayesian inference Neural model of V1 

INTRODUCTION 

Texture segmentation is a visual process that partitions 
a visual scene into regions of different textures. It is a 
preattentive and parallel process that covers a large area 
of the visual field simultaneously and is completed within 
100msec (Beck, Prazdny & Rosenfeld, 1983; Julesz, 
1983; Treisman, 1985). The result of this global analysis 
is used to direct a small aperture of focal attention to 
interesting areas of the visual scene for further detailed 
analysis of form (Julesz, 1983). 

In this paper, we present a Bayesian inference model 
for texture segmentation. This model is developed by 
Lee, Mumford and Yuille (1992). A model of similar 
spirit has also been developed by Geman, Geman, 
Graffigne and Dong (1990) using the Markov Random 
Field approach and directional residue statistical 
measures. In this paper, we analyze the dynamics of the 
model and discuss the relevance of this model to the 
understanding of the computation in the primary visual 
cortex. 

Julesz (1983) suggested that preattentive texture seg- 
mentation arises from differential stimulation of different 
feature detectors in the brain. Based on this idea, Turner 
(1986), Fogel and Sagi (1989), Voorhees and Poggio 
(1988), Bovik, Clark and Geisler (1990), Malik and 
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Perona (1990) have developed successively more refined 
models for texture segmentation. All of these models 
involve several serial processing stages of filter response 
computation, Gaussian smoothing, and edge detection. 

In our model, the surface interpolation process and the 
boundary detection process are combined into an inter- 
active and concurrent system, with the resulting advan- 
tage of better boundary localization. Our model is the 
first model to use explicitly the idea of surface interp- 
olation in texture segmentation. Furthermore, ours is 
also the first to explicitly assign probabilistic priors on 
texture variations in scale and orientation. This measure 
enables the model to tolerate deformation of texture 
within a surface due to perspective and surface shape of 
3D objects. 

This Bayesian approach yields a 'neural network 
model' which is similar in spirit to Grossberg and 
Mingola's (1985) Boundary Contour and Feature Con- 
tour systems proposed for brightness perception in the 
visual cortex. However, there are important differences 
between the two. One is that their feature system employs 
only passive diffusion, it is constrained by but not 
affecting the boundary system. In contrast, the boundary 
and surface systems in our model are tightly coupled and 
interactive. A much more important difference is that, 
because of the complexity of the computation, the simple 
gradient descent relaxation method their model utilizes 
would tend to trap the system in an inferior hypothesis. 
Our approach, on the other hand, utilizes a gradual 
relaxation strategy to seek better hypotheses. 
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Our approach also differs from the other models in 
that we started with a computational theory that recog- 
nizes texture segmentation as a process for inferring 
surface region and surface boundaries, and then devel- 
oped the algorithm and implementation to realize the 
theory. The basic biological insight provided by this 
model is that complex cells in the primary visual cortex 
should not be narrowly interpreted as local feature 
detectors but rather as computational units for interpret- 
ing surface and extracting surface boundaries. The goal 
of  this paper is to propose a functional framework based 
on this model for understanding the complex cells in the 
primary visual cortex. 

In the first part of the paper, we will present the 
Bayesian model for texture segmentation, deriving the 
basic properties of the dynamical system of the model 
and illustrating them with computational results. In the 
second part of the paper, we will discuss the biological 
and psychological evidence that lead us to suggest the 
possible existence of such a system in the brain. 

BAYESIAN INFERENCE AND ENERGY FUNCTIONAL 

The basic idea of Bayesian inference is that our 
interpretation of a visual scene is strongly influenced by 
our expectation and our prior knowledge of the world. 
The conditional probability of certain surface quality 
statistics f and location of surface boundary B given a 
measurement g is, by Bayes' rule, 

P(g If, B )P ( f ,  B) 
P ( f ,  B Ig) - (1) 

P(g) 

P(g) is independent of f and B and is therefore a 
normalization factor. The maximum a posteriori esti- 
mate of P ( f ,  BIg)  can be obtained by finding t h e f a n d  
B that maximize P(g l f, B)P(f ,  B), where P(g If, B) is 
the constraint o f f  and B on data g, and P ( f ,  B) specifies 
the prior constraints on surface statistics.)C and surface 
boundaries B. 

Julesz (1983) showed that some textures with identical 
first, second and third order global statistics can be 
preattentively discriminated. Therefore, the crucial 
determinants of texture discrimination are not global 
statistical measures but are the density of the so-called 
textons and their gradients. 

Textons can be considered as descriptors of surface 
properties. Among the textons Julesz listed are oriented 
line segments, line terminators, crossings of line segments, 
and blobs. The simple cells in the primary visual cortex 
are ideal detectors of these textons (Hubel & Wiesel, 
1968). Their receptive fields can be ideally modelled by 
the following self-similar family of Gabor  wavelets (Lee, 
1994), 

2~o - 50 (2(x cos 0 + y sin 0)) 2 0 ~.¥, .v" ~), O) - 5 , ~  exp 

• exp - 5 ~ ( - x s i n O + y c o s O )  2 

.[exp(i(o)x cos 0 + ~)y sin 0)) - e x p ( - ~ ) ]  (2) 

F I G U R E  1. Receptive fields of  an ensemble of  simple cells can be modeled by a family of Gabor  wavelets under biological 
constraints: 1.5 octave frequency bandwidth, 24 deg orientation bandwidth and 2:1 aspect ratio. 
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Direct Input to Complex Cells: Texton 
Statistics within B controlled window, 
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g statistical 
window computes 
statistics of 

\ 
S u r f a c e  B 

~ Complex Cells 

Q Q Q SimpleCells 

B (boundary) 

Boundary signals can cut away the lateral input of simple 
cells to the complex cells, i,e. modifying the g statistical window. 

FIGURE 2. Complex ceils compute the average response of the simple cells or the density of the textons within a g statistical 
window. The g statistical window is controlled by the boundary of the region. Four circular g windows are shown in the upper 
figure along the dashed line. The inner two windows compute the simple ceils' responses within the full extent of the windows, 
while half of each of the outer two windows has been cut off by the boundary. In such cases, only the responses within the 
boundaries, i.e. the gray part of the windows, are used. The size of the g window can be controlled by the selective inactivation 

of the feedforward connection as shown in the lower figure. 

where ~o is the radial frequency and 0 is the wavelet 
orientation. The Gabor wavelet is centered at 
(x = 0, y = 0) and its L 2 norm is normalized to 1, i.e. 
(qs, ~ ) = 1. The aspect ratio is 2:1, the frequency band- 
width is 1.5 octaves, and the orientation bandwidth is 
24 deg. A discrete set of this family of wavelets is shown 
in Fig. 1. 

The wavelet transform is given by, with 

2.5 

(D 

~WI(x, y, a, O) 

=ffl(x-xo,y-yo)~k(x,y,a,O)dxdy. (3) 

# 7  at each x, y a, 0 would be represented by the firing 
rates of four simple cells (positive and negative co- 
efficients of the even and off symmetric wavelets) in the 
cortex. 

Julesz's (1986) psychological data suggested that there 
is a A-neighborhood (at least twice the element size) in 
which texton densities and their gradients are computed. 

Also, textons organize into texture percept only if their 
spatial separation is smaller than the diameter of a 
A-neighborhood window. This window scales with the 
Gabor wavelets and the texton density within it is given 
as follows: 

g(x'Y'a'°)=l f f~.~,,o,x.y, R(W'I(Y,.~,a,O))dA (4) 

where A is the area within a a dependent neighborhood 
window N~ centered at (x, y). The spatial extent of the 
N~ window within which the statistical average of ~WI 
is computed should be constrained by the boundary (see 
Fig. 2). However, this constraint is not considered in the 
present model. R(.) is either the rectification of (Malik 
& Perona, 1990) or the power modulus of the simple 
cell responses (Pollen, Gaska & Jacobson, 1989). Since 
Gabor wavelets are both feature detectors and frequency 
analyzers, g(x, y, a, 0) is considered as the local distri- 
bution of texton statistics as well as of the spectral power 
in an image. The contrast normalization mechanism 
in the visual cortex (Heeger, 1992; Albrecht & Geisler, 
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1991) can be used to normalize this local distribution as 
follows, 

g(x, I', •, O) 
= (5) g(x,y,a,O) f~,~(x,y,&ff)d6ff +~l 

where r/ is a constant. 
The measured local distribution g, the relatively global 

estimate of the texture statistics distribution f of the 
surfaces and the estimate of the boundaries B of the 
surfaces are constrained by the following multivariate 
normal distribution, with standard deviation p,~, 

, ( ,  ) P(g l f ,  B ) = ~  H exp - g - . f ) :  
,..,,,..o 2p~ ( " 

(6) 

The priors (natural constraints) on the surface statistics 
f and boundaries B are summarized as follows: 

(1) Spatial homogeneity: statistics of surface qualities 
on the surface of an object tend to be continuous and 
similar. 

(2) Variation of texture in scale and orientation due 
to perspective and 3D surface shape will introduce a 
gradual and systematic shift in the statistical distri- 
bution. 

(3) An abrupt change in these statistics is indicative of 
occlusion boundaries between surfaces. 

(4) Any given visual scene is to be segmented into a 
limited number of surface regions with boundaries of a 
finite length. 

Prior 1 is formulated probabilistically by assuming 
partials f ,  a n d ~  within a surface follow two i.i.d, normal 
distributions. Prior 2 is formulated probabilistically by 
assuming partialsfogo and f0 within a surface also follow 
two i.i.d, normal distributions. Prior 3 is the prior that 
produces segmentation at locations of large texton 
gradient. Prior 4 is the prior specifying the amount of 
segmentation boundaries allowed within an image. 

For homogeneous and stationary texture, the stan- 
dard deviation of the global statistical distribution of g 
within a surface along each dimension is small. For very 
granular textures, the global statistic o f g  exhibits signifi- 
cant spatial fluctuation and its distribution will have a 
large variance. Similarly, for nonstationary texture such 
as pebbles on a beach in perspective or a wheat field 
swaying in the wind, global statistics of g within the 
surface will also have large variance in scale and orien- 
tation. Large variance in g along certain a dimension 
requires large smoothing force applied to f ,  i.e. assuming 
a small variance in the distribution of partial 8falong the 
corresponding dimension. 

The exponents of the prior constraints and the 
data constraints can be formulated into the following 
continuous energy functional, 

E(f ,  BIg) oc - log(P(f ,  B Ig)) 

=ffff, 0, x, y ,  

--g(a, O, x ,  y)]2 d log a dO dx dy 

+ f f f f, o 
+ 

d log a dO dx dy + ~ fR dz (7) 

where D is the spatial domain, L) is the spatial frequency 
domain; ( x , y ) ~ D ,  (a ,O)~ l ) .  B is a set of C 1 curves 
cutting up D into different regions, l a n d  g are functions 
of four continuous variables x, y, a and 0. g is the 
average wavelet responses within a a-dependent 
window. 

The parameters 2.., 2.,., y~, 70, are inversely pro- 
portional to the standard deviations of g within each 
surface region along dimensions x, y, or, 0, normalized 
with respect to/~d. The smoothing effect they produce in 
each dimension introduces tolerance to signal variations 
along the corresponding dimension. 

The maximum a posterior estimate o f f  and B, which 
is the texture segmentation result of the image, can be 
obtained by minimizing this energy functional 
E([~ Big), with respect t o f a n d  B. 

The three integrals in equation (7) represent three 
competing forces in action: the force of reality (first 
term) demands fidelity to data; the force of homogeneity 
(second term) smooths out variation within a region 
and splits apart significantly different regions; and 
the force of tolerance (third term) prevents excessive 
splitting due to over-sensitivity, i.e. it controls the 
formation of breaks. These three forces act in concert 
to arrive at a balanced compromise according to the 
assumed prior statistical distributions specified by the 
parameters. 

OPTIMIZATION DYNAMICS AND SYSTEM 
BEHAVIORS 

The battle of these forces are best illustrated by a 
dynamical system that can be used to find the maximum 
a posterior es t imate fand  B. Since the energy functional 
is not convex, a simple gradient descent strategy will 
have the system trapped in a local minimum. A strategy 
to overcome this problem is called gradual relaxation: a 
convex functional is developed to approximate the real 
functional and it is slowly transformed back to the real 
functional in a series of  successive stages of  decreasing 
convexity. At each stage, the estimates o f f  and B are 
found by gradient descent. These estimates are used as 
starting points for the subsequent gradient descent in the 
next stage. 

The energy functional [equation (7)] can be formu- 
lated as a series of approximating functionals E~, the 
deformation of which is controlled by a continuation 
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True Energy j 

Convex Energy Land ~ ~  scape 

FIGURE 3. The energy landscapes of a sequence of deforming energy 
functionals and the successive gradient descent of a 'ball' in this 
sequence of landscapes: the system first converges to the global 
minimum of the convex landscape, which is then used as the starting 
point for the next descent in the new energy landscape. This strategy 
of successive gradual relaxation will allow the system to converge to 
a state that is close to a global minimum of the original energy 

functional (adopted from Blake & Zisserman, 1987). 

parameter  x, in an approach  similar to that  taken by 
Ambros io  and Tortorell i  (1990) and Richardson (1990). 

E ' ~ = f f f f R [ ( f - - g ) 2  

+ 22 II v f  112(1 - l)2 + x~t tl v/II 2 

 Fld + 4 ~ c J  l o g a d 0 d x d y  (8) 

where f ,  g, 7~, 7o, and ~ are defined earlier, and 
2 = 2x = ~y (assuming isotropic distribution o f  g over 
space). The earlier binary boundary  B is replaced by 
a cont inuous  value boundary  variable l(x, y). 
II Vf  II = v/(df/Ox) 2 + (t?f/Oy) 2, and similarly for ]l VI II = 
x/(31/ax)2+(Ol/Oy)2, x, the cont inuat ion parameter ,  
starts at 1 and decreases slowly over time. In the limit 
as x ~ 0, E,  converges to E0, the original energy func- 
tional. Figure 3 illustrates the idea o f  successive gradient 
descent in a series o f  deforming energy landscapes. 

The descent equat ions for f and l for minimizing this 
energy functional can be obtained f rom the associated 

Euler -Lagrange  equat ions by setting 

df OE~ 0 ~E~ ~ OE. ~ OE~ 
(9) 

dt 3f  dx Of'~ ay Of~. 8a df'~ O0 8f'o 

dl ~E~ 0 ~E~ ~ ~E~ 
dt 8l 3x 8l" Oy 31'y 

(lO) 

i.e. 

~ a , O , x , y , x , t )  
dt 

= rf{--f(a, O, x,y,  x, t) 

+g(a,  O, x,y,  x, t) 

2 O~f 20~f 
+ 7~ O2~oga+ 7°~TO 

+ V" [22Vf(1 --/(x, y, re, t))2]} (11) 

d/(x, y, x, t) 

dt  

f 
- r t~xV2l (x ,y ,  x, t) 

t. 

+ 22(1 -- l)II Vf  II a - T~x " (12) 

The parameters  r: and rt are positive rate constants  which 
control  the rate o f  descent. At  each ~, as x changes 
slowly f rom 1 to 0, the system relaxes to an equilibrium, 
i.e. df/dt and dl/dt are driven to 0. 

These equations describe the dynamics  o f  the system. 
They suggest that  the opt imizat ion is achieved by two 
concurrent  and interactive processes o f  boundary-  
contract ion and surface-expansion mediated by the three 
forces described. The flow of  computa t ion  in this model  
is illustrated in Fig. 4. As time evolves, the surface 
statistical signals f diffuse in all four dimensions 
(a, O, x ,y) ,  but their diffusion in space is modula ted  
by the boundary  signal l(x, y). Therefore,  the diffusion 
is nonlinear because it would be slowed down or  
blocked by the boundary  signals. On the other  hand, 
the boundary  signals 1 undergo gradual  contract ion 
over space. They are activated by the gradient in the 
surface signals II VT II and they contrac t  spatially over 

Output Surface Statistics 
Representation 

Output Boundary 
Representation 

t t 
Statistics Gradient] 

[ Interpolatio Boundary 
~.System v~. System 

oo.,o,, t I I Toom ,n. 
statistics / Feedback to limit diffusion polarity 

Gabor wavelet responses Gabor wavelet responses 
to surface features to luminance boundary 

FIGURE 4. The computational flow of the model: the surface system computes the statistics of the simple cells and these 
statistical signals diffuse in both the spatial and spectral domains in the process of surface interpolation; the boundary system 
is activated by the gradient in the statistical signals and it feedbacks to constrain the diffusion process in the surface system. 
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F I G U R E  5. The spatial contraction of  the boundary  signals over time: in this image, V[¢ 0 at x = 0 and V [ - 0  elsewhere. 
Initially, the boundary  signal has a wide spatial spread. As ~,- decreases, the spatial spread of  its response contracts toward 

the discontinuity al x = 0. The boundary  responses at ~,- - 1, 0.5, 0. I, 0.0001 are shown in the figure. 

time as K--* 0. Therefore, the system is characterized 
by a gradual sharpening of the boundary signals as 
well as a simultaneous nonlinear smoothing of the surface 
signals. 

The gradual contraction of the boundary signals can 
be understood by considering the system's response to 
a boundary. Let the system's responses in all texture 
statistical channels f be piecewise constant in x and r 
except at the boundary x = 0. In this case, the gradient 
o f f  along y is all zero, and the gradient along x is all 
zero except at x = 0; however, at x = 0, because of the 
collective gradient Vf is nonzero and greater than the 
threshold, the boundary signal is active, i.e. l (x = O) = 1. 
Therefore the second term in equation (12)just vanishes, 
and at the equilibrium of each K relaxation stage (i.e. 
dl/dt  = 0), the dynamical equation [equation (12)] yields 

~ /  l~  
- ~ / = e  i , l > ,  (13) 

~K ?x-" 4h- 

V2l controls the lateral interaction between the boundary 
signals l. As h--~ 0, the spatial extent of the lateral 
inhibition extends within the surface, and the boundary 
signal l contracts to a sharp line as shown in Fig. 5. 

The smoothing of f is obvious from equation (1 1). The 
influence of the boundary process makes it a nonlinear 
diffusion equation, i.e. at the boundary, the diffusion 
is slowed down or interrupted. But far away from 
the boundary, the diffusion is linear. The dynamical 
equation becomes, 

. 1  - ). 2 O x  - ~  _ 
z ' ~ -  ~ loga2 

,32' 

- 7o;'OJ~ = g ( x , y ,  log a, 0). ( 1 4 )  

The predicted response of f at a particular point 
(xo,yo, a0, 00) in the spatial-spectral space, away from 
the boundary is given by convolving a Green's function 
with the input signal, 

f (xo ,  Yo, log o0, 00) 

g(x, y, log or, 0) + dx dy d log cr dO (15) 

where C is a constant; G(x,  ),, o, 0), the Green's function 
to equation (14), is given by, 

C 
G (x -- x~, y - Yo, log cr - log a0, 0 - 00) = -- KI (r) (16) 

r 

where K~ is the modified Bessel function of the second 
kind of order 1 and 

,.= 7 
V \  7o ) \ 7o ) \ z, j \ /., / 

(17) 
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is the distance away from the position (x0,Y0, ao, 0o) 
being considered. 

For easier visualization, the Green's function in 1D is 
given by 

G(x) = ~ e -Ixl/~. (18) 

The implication of this analysis is that the process of 
surface statistics interpolation can be implemented in 
two ways: one is by the nonlinear diffusion off ,  and the 
other is by the feedforward input from the simple cells 
with the weight (Green's function) of the feedforward 
connection dynamically controlled by the global statist- 
ical parameters 2, a, 7~, Y0 as well as by the boundary B. 

COMPUTER EXPERIMENTAL RESULTS 

The continuous energy functional [equation (7)] and 
its variation by the continuation method [equation (8)] 
allows us to analyze the dynamical system analytically 
and arrive at some basic understandings of the system 
with respect to boundary contraction and surface com- 
pletion. We also implement the model in a parallel 
MASPAR computer to study its performance. 

Both computer and biological implementation of the 
model requires discretization of the representation. 
Interestingly, the cortical sampling density in the spatial- 
spectral domain exceeds the minimum requirement 
(16 orientation columns, 4 frequency steps per octave, 
half receptive field overlap) for a tight frame which 
functions basically like a continuous representation (Lee, 
1994). Therefore, the brain does have the representa- 
tional machinery to implement the continuous energy 
functional. For computer implementation, because of 
the limit in computational resources, we have used a far 
coarser representation: 8 orientation steps and 3 scale 
steps with 1 octave apart. The frame is still relatively 
tight in this case, so that reasonable reconstruction can 

Y ,: :: : 

:::: : . :  : 
, . . . . . : . . .  

iiii~ii{:::i i!! : 

!'! 
:? 

be obtained using simple linear summation (see Fig. 6). 
Therefore, this coarse representation is a reasonable 
approximation of the continuous representation in our 
implementation. 

A computational network has been set up to imple- 
ment the discrete version of the continuous energy 
functional for computing the maximum a posterior 
estimates o f f  and B. The architecture of computational 
implementation is shown in Fig. 7. The surface system 
is composed of a set of 24 lattices of nodes, each lattice 
corresponding to a wavelet channel of a particular 
orientation and frequency tuning. Each of these lattices 
(shown in Fig. 7 as the spatial lattice supported by 
the telephone poles) resembles Blake and Zisserman 
(1987)'s weak-membrane. The membranes in this model 
are coupled together to allow inter-membrane spectral 
diffusion so that the system can tolerate texture variation 
in scale and orientation. Therefore, this model has been 
called the coupled-membrane model (Lee et al., 1992). 

Many of the algorithms developed for minimizing the 
discrete version of the energy functional exploit the same 
strategy of gradual relaxation. Their dynamics (Blake & 
Zisserman, 1987; Geiger & Yuille, 1991) are qualitatively 
similar to the continuous dynamics discussed earlier. 
For discrete implementation in computer, we generalized 
the graduated nonconvexity algorithm of Blake and 
Zisserman to seek the best estimate of f and B. The 
computational results are used to evaluate the perform- 
ance of the energy functional as well as to illustrate 
qualitatively the effect of boundary sharpening and 
surface spreading. 

Figures 8 and 9 show the converged boundary signals 
of the texture system in response to a set of textured 
images. Responses to Mondrian and Brodatz demon- 
strated the system's ability to tolerate stochastic noise in 
granular textures. Responses to image Shell demon- 
strated the tolerance to gradual shifts in the orientation 
of the texture. Responses to Vase and Sierra demon- 

.:: .. 

ii 

• i 

! 

Original Image Reconstruct ion 

FIGURE 6. Reconstruction of the standard image 'Lena': despite the coarse sampling density (8 orientations per cycle, l scale 
step per octave), the reconstruction resulting from simple linear summation of the product of the wavelets' coefficients and 
their receptive fields produce a nice interference-free reconstruction, suggesting that the representation is complete within a 

certain frequency band and is fairly continuous, thus can reasonably represent the input signals for our model. 
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Spatial lattice of a wavelet 
(texton) statistics channel 

Diffusion Process is controlled 
by the boundary signal I(x,y) 

n r a c t o n b  t w e n w a v e  t 

channels of different scales 
and orientations in the spectral map 

ctral map at a particular location, 
/ / / \ , ;  , o0. 

distribution of the signals in scale 
0 and orientation 0 space. 

J B o u n d a r y  statistical measurement of the signal I(x,y) 
response of a particular wavelet channel 

FIGURE 7. The architecture of computation of the Bayesian model: the 4D information is arranged as a spectral bundle. A 
set of 2D spectral maps are embedded in the 2D spatial space in a manner similar to hypercolumns embedded in a retinotopic 
coordinate in the primary visual cortex. Nodes of a wavelet channel are locally interconnected for spatial diffusion, and each 
channel is also connected to its proximal wavelet channels for spectral diffusion. The boundary signals can interrupt the spatial 

diffusion of the surface statistics signals. 

strated the system's tolerance to gradual shifts in the 
scale or size of  the texture elements. 

The gradual sharpening of the boundary signals can 
be seen in Fig. 9, which shows the boundary signals of  
the system in response to the images Mondrain and Eye 
in successive relaxation stages. Initially, the boundary 
signal is fuzzy, fragmented and sketchy, resembling an 
artist 's initial sketch. Over time, it converges to a sharp 
boundary. 

The initial response of  a channel depends on the 
frequency and orientation tuning of the channel. But as 
optimization progresses, the signals can be seen to 
diffuse within the channel across space as well as into 
other channels. This effect can be seen in the surface 
signals of  the system in response to image Shell as shown 
in Fig. 10. At the end, each channel seems to carry a 
trace of  the global impression of  the image, indicating 
that the texture statistics within each surface region have 
become homogeneous. 

In general, this system takes about l0 iteration stages 
and about 2 hr on the MASPAR parallel computer to 
converge. However, theoretically, each iteration stage 
can be performed in one 'dynamic relaxation' analog 

neural network in milliseconds. Therefore, the 10~c 
stages can be completed within 100 msec in the brain. 

The model has at least three major limitations: first, 
complete contour of  the surface boundary is not guaran- 
teed because there is no hard constraint or surface- 
region label to enforce complete partitioning of the 
different surface regions; second, the parameters of  
the surface priors, i.e. the variances of  the statistical 
distributions, are uniformly set a priori  for the whole 
visual scene. For a system that automatically perform 
texture segmentation for different realistic images, these 
parameters should be adaptively estimated within each 
region. This lack of adaptation of  parameters according 
to local image statistics leads to the emergence of 
spurious boundary signals on the surface of the shell 
(Shell), as well as on the surface of the sand dune 
(Sierra). We have developed a more advanced model to 
address these problems (Zhu, Lee & Yuille, 1995). 

PSYCHOLOGICAL IMPLICATION 

This Bayesian model provides a useful framework for 
understanding the computation in the visual system that 
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FIGURE 8. The boundary output of the Bayesian model in response to a set of texture images. Parameters used for Vase, 
Mondrian and Shell are 2 = 6, ~ = 0.02, 7, = 2, 70 = 1. Parameters for Brodatz and Sierra are 2 = 12, • = 0.005, V, = 4, V0 = 4. 
For the image Eye, only the luminance channel is relevant, therefore segmentation can be achieved using a single 

weak-membrane with parameters 2 = 6, a = 0.03. 

results in the perceptual experience of texture segmenta- 
tion elucidated in the studies of  Julesz (1983), Beck et al. 

(1983) and Treisman (1985). In this and the next sec- 
tions, we at tempt to build some conceptual links between 
the behaviors of  the model and the psychological as well 
as the physiological observations. 

First, psychologically, brightness, color and texture 
signals are found to be able to fill in artificial or natural 
scotoma to complete a surface (Yarbus, 1967; Lashley, 
1941; Ramachandran,  1991; Paradiso & Nakayama,  
1991; Redies & Spillman, 1981; Watanabe & Cavanagh, 
1991). This psychological phenomenon of filling-in is 
related to the nonlinear diffusion for interpolating the 
surface statistical signals f in the texture segmentation 
process. However,  the diffusion of  surface statistical 
signals in our model is responsible for completing the 
percept of  surface, rather than for creating the percept 
of  interpolated texture pattern. The surface interpolation 

process has a time course of  100-200msec (Paradiso 
& Nakayama,  1991; Watanabe & Cavanagh, 1991), 
whereas the reconstruction of texture patterns to fill 
up the scotoma might take seconds (Lashley, 1941; 
Ramachandran,  1991). The texture filling-in process 
might have two components: surface interpolation and 
image reconstruction. Our model might capture the 
diffusive process of  surface interpolation, but not the 
mechanism for perceptual image reconstruction. 

Julesz (1983) has pointed out that during the 100 msec 
span of  preattentive texture segmentation, the texton 
atoms have not been glued together to form a texton 
molecule; that the region grouping process seems to be 
operated by 'averaging'  the density of  texton atoms such 
as oriented segments. Because the averaging process is 
applied to the atoms of texture molecules, the preatten- 
tive system is blind to the positional and configurational 
information of textons, i.e. the structure of  the molecules 
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FIGURE 9. The evolution of the boundary signals over three successive ~- 0, = 0.5, ~,- ~ 0.1, K 0) relaxation stages for 
Mondrian [top row] (c¢ = 0.02, 2 = 6, ~'~ = 2, ?0 = l) and for Eye [bottom row] (~ = 0.03, ). = 6). The initial response resembles 

an artist's sketch, and the final response resembles a Matisse's drawing. 

themselves. This phenomenon is consistent with the both phenomena related to surface interpolation 
nonlinear spatial diffusion of the surface statistical process but that the perceptual reconstruction of 
signals f in the wavelet channels of our model. The the filled-in patterns require additional processes in a 
insight provided by the model is that the 'averaging' longer time frame which are not captured in this 
process and the part of the 'filling-in' process are model. 
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Initial response map of the surface statistical channels. 

Final response map of the surface statistical channels. 

FIGURE 10. The normalized surface statistics of the model in response to image Shell. Within each response map, there are 
3 x 8 little squares, each showing the spatial response of a particular wavelet channel. The first column on the left is computed 
from horizontally tuned wavelets. Orientation selectivity rotates with the columns. The top row is the finest scale and scales 
increase with row. The initial response is very localized in spectral and spatial space. The final response shows significant 

diffusion in all dimensions, with the shell's unified surface cartoon appearing in every channcl. 
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An unique component of our model is its explicit 
priors on the statistical variations in the scale and 
orientation domains within a surface region. These 
priors introduce a smoothing interaction between texton 
statistics channels of different scales and orientations. 
The magnitude of this smoothing interaction depends 
on the global texture statistics within a surface region. 
When a surface contains random or non-stationary 
texture, significant smoothing in scale and orientation 
space will occur to capture the variance of texton 
statistics. Such smoothing will reduce the difference of 
the texton statistical distributions of two random texture 
regions. In this case, segmentation requires a larger 
difference in scale or orientation in the textures of the 
two regions. Therefore, our model suggests that texture 
segmentation is not a local process, but is a context- 
sensitive global process involving surface interpolation. 
The global statistics of a surface determines the texture 
gradient threshold and the speed of texture segmenta- 
tion. This is consistent with Enns (1986) and Nothdurft's 
(1991) findings that texture segmentation is context 
sensitive and that a larger texture gradient is required 
for segmenting regions of increasing random texture 
elements. 

The model also provides an interesting insight to some 
common experiences. The gradual refinement of the 
boundary signals in the system is similar to the evolution 
from a quick sketch to a clean line drawing of an artist. 
People perceive cartoons, caricatures and line-drawings 
much faster than real images. In a cartoon, the outline 
of the figures resembles the output of the boundary 
system and the coloring of the cartoon figures resembles 
the output of the surface system. By discarding and 
simplifying the images, cartoons allow us to skip several 
steps in our visual processing, leading to more immediate 
perception of forms. 

BIOLOGICAL IMPLICATION 

We propose that texture segmentation, as a part of 
the surface inference process, is mostly accomplished 
in the primary visual cortex. This proposal is based 
on several pieces of evidence, first, surface perception 
can be induced preattentively by stereo information 
(Nakayama, Shimojo & Silverman, 1989). Since cells 
lose their specificity for stereo disparity and become 
binocular beyond V1, the creation of the surface percept 
likely takes place within V1. Second, the receptive 
fields of V1 cells resemble Julesz's textons. Therefore, 
the representation of textons and the computation 
of texton density and gradients likely locate in V1 
so that the segmentation and pop-out information 
can be immediately fedback to the subcortical areas 
to direct reflexive eye movement. Third, even if the 
texton statistics are computed in extrastriate cortices, 
texture boundary would still be represented in V1 
because only V1 cells have the high spatial specificity 
required for boundary localization. In fact, Knierim and 
Van Essen (1992), Lamme (1995), Zipser, Lee, Lamme 
and Schiller (1994), and Lee, Mumford and Schiller 

(1995) have found ample evidence that V1 cells are 
sensitive to texture contrast. 

Neurons in the primary visual cortex have been 
roughly classified into simple, complex and hyper- 
complex cells. Simple cells have high spatial specificity 
and behave more or less like linear wavelet filters. 
Complex cells are distinguished from simple cells by two 
fundamental properties: (1) they showed unmodulated 
responses to drifting sinusoidal gratings; (2) they are 
sensitive to contrast but insensitive to the direction of 
contrast. Hypersimple and hypercomplex cells are 
simple and complex cells with additional end-stopping or 
side-stopping properties. Although the receptive fields 
of simple cells can be modeled by Gabor wavelets and 
therefore can be understood as representational elements 
as discussed earlier, simple cells can also be understood 
as the first and the second Gaussian directional deriva- 
tives (Young, 1985) on the luminance signals. Complex 
cells can be considered as computing the statistics of 
the first and second derivatives of the luminance (simple 
cells' responses) and hypercomplex cells as taking the 
first and second derivatives of the complex cell re- 
sponses. To push this idea one step further, we conjec- 
ture that the complex cells are not just computing surface 
feature statistics, but are also actively interpolating the 
surface, thus constituting the surface system. The hyper- 
complex cells are not just computing texture gradient, 
but are also detecting boundary as well, thus constituting 
the boundary system. In this view, simple cells, complex 
cells and hypercomplex cells can be understood within a 
unified framework: they are computational units for a 
boundary detection and surface interpolation system for 
luminance, textures and likely for other visual cues such 
as color, motion, stereo disparity as well. 

Many of the well known context-sensitive phenomena 
of complex and hypercomplex cells, i.e. sensitivity of 
visual neurons of global features that fall outside their 
classical receptive fields, can be understood as behaviors 
of computational units in this Bayesian surface 
interpolation framework. The iso-orientation surround 
inhibition (Fries, Albus & Creutzfeldt, 1977; Nelson & 
Frost, 1978), side-stopping (De Valois, Thorell & 
Albrecht, 1985; Born & Tootell, 1991), cross-orientation 
surround facilitation or orientation contrast sensitivity 
(Gilbert & Wiesel, 1990; Knierim & Van Essen, 1992; 
Lamme, 1995) are suggestive of the texture contrast 
sensitivity and lateral-inhibition characteristic of the 
cells participating in boundary detection. On the other 
hand, complex cells that are not sensitive to the surround 
stimuli (Knierim & Van Essen, 1992) or are facilitated by 
surround stimuli composed of iso-orientation and iso- 
frequency features (Maffei & Fiorentini, 1976; Gilbert 
& Wiesel, 1990) are suggestive of the cells involving 
in surface interpolation. In fact, the unmodulated re- 
sponses of complex cells to drifting sinusoidal gratings 
could arise simply from the diffusion within the surface 
statistics channel. 

Some insights provided by the model have been 
confirmed by recent neurophysiological experiments. 
Lee et al. (1995) found that some complex cells' 
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responses to texture boundaries contract spatially over 
time, similar to the gradual sharpening of boundary 
signals predicted by the model [see equations (12) and 
(13)]; that the time required for the emergence of the 
sharp boundary signals is proportional to the area of the 
texture region, confirming that texture boundary detec- 
tion is not a local process, but is coupled with a global 
surface interpolation mechanism. Moreover, Lamme 
(1995) and Zipser et al. (1994) found that VI cells are 
sensitive simultaneously to many segmentation cues, 
thus providing a substrate for cue-invariant surface 
interpolation and boundary detection. Lastly, Pettet and 
Gilbert (1991), De Weerd, Gattass, Desimone and 
Ungerleider (1994) have found V I cells in artificial 
scotoma could develop response to surrounding stimuli 
even when there is nothing falling on to their classical 
receptive fields. These could be the neural correlates of 
the filling-in effect related to surface interpolation. 

Two additional predictions of our model about the 
surface interpolation mechanism remain to be tested: 
(l)  complex cells performing surface interpolation 
will exhibit a spatial smoothing effect within a surface 
region, i.e. the spatial variation of their responses 
over a texture region will decrease over time; (2) they 
should also exhibit the spectral diffusion effect, i.e. 
their spatial frequency or orientation bandwidth will 
expand over time when the texture within the surface 
is random or non-stationary. This spectral bandwidth 
expansion is dependent on the statistics of the images. 
It is proportional to the variance of the texture statistics 
within the whole surface region. Because of this, 
traditional sinusoidal gratings will produce very little 
bandwidth expansion because their spectral content is 
very concentrated. 

VI complex cells are probably too pluralistic to be 
classified simply into surface cells and boundary cells. 
These two classes of cells might represent the two 
extremes of  a continuum, i.e. there will be cells that 
perform a variable amount of both tasks. The cortex 
develops and maintains itself in a very flexible way. 
It can adopt whatever happens to be there to perform 
the necessary function. The circuitry that evolves to 
make use of a whole spectrum of cells to realize the 
surface interpolation function would necessarily be quite 
pluralistic as well. 

POSSIBLE NEURAL CIRCUITS AND M E C H A N I S M S  

The basic circuitry for implementing this Bayesian 
model is relatively simple and biologically plausible. 
Since the surface interpolation process involves primar- 
ily local horizontal interaction within the complex cell 
channels, it can be mediated by the well known horizon- 
tal axonal collaterals of the pyramidal complex cells in 
layers II + I I I  of VI. These collaterals enable complex 
cells to connect to other cells up to 4 -6mm (i.e. 
4-6 hypercolumns) away (Rockland &Lund  1983). Cells 
of similar tuning in different hypercolumns are inter- 
connected and these connections tend to be excitatory in 
nature (Ts'o, Gilbert & Wiesel, 1986). The fact that the 

interaction is not limited to cells of the same orientation 
specificity but extends to cells of similar orientation 
preference provides a physical substrate for spectral 
diffusion. The simplest neural circuit for implementing 
equation (l l) (surface signal propagation) and equation 
(12) (boundary signal contraction) is shown in Figure I 1. 

In this circuit, complex cells of similar specificities in 
adjacent hypercolumns are interconnected with excit- 
atory connections to mediate the spreading of the sur- 
face signals f i n  four dimensions. The boundary complex 
cells l (x,y) ,  on the other hand, are activated by the 
'texton density gradient' (Vf)  computed within a scale- 
dependent local window. The interaction between sur- 
face complex cells can be interrupted by shunting 
inhibition from the boundary cells, i.e. the (1 - l(x, y)) 
term. This interruption can be done by shunting the 
corresponding dendritic trees of the surface complex 
cells via basket cells, or it can be done via an ensemble 
of inhibitory interneurons such as the double bouquet 
cells whose vertical axons form a dense, long and narrow 
~curtain' from layer II to V isolating one cortical column 
t¥om another (Somogyi & Cowey, 1981). 

The lateral interaction within VI can produce non- 
linear smoothing of the surface statistics signals within 
a surface region. A weak excitatory coupling is sufficient 
to produce local coherent oscillation or synchronized 
firings among surface cells within a surface (Wilson & 
Bower, 1991). Temporal synchronization of groups of 
neurons could label the surface of an object (Von der 
Malsburg & Schneider, 1986) and evidence of stimulus- 
specific synchronization of Vl neurons have emerged 
over the past few years (Gray & Singer, 1989). More 
global synchronization can be produced through global 
feedback of  the extrastriate cortices a feature that is 
not captured in our present model. 

Since most part of the visual scene are surfaces, 
surface cells would tend to be activated more often than 
boundary cells, thus more strongly labeled by cyto- 
chrome oxidase. This leads to the hypothesis that the 
cytochrome oxidase (CO) rich blobs in V1 are populated 
by cells coding surface signals and the interblobs are 
populated by cells coding boundary signals. This 
hypothesis is consistent with Rockland and Lund's 
(1983) findings that the CO blobs are included in the 
densely connected lattices in the superficial layer of V I. 

What is the mechanism for controlling the dynamics 
of successive gradual relaxation (i.e. the parameter •) in 
this neural network? 

The work of Geiger and Yuille (1991) has related 
the stage of gradual relaxation with the slope of the 
activation function of the boundary process using the 
mean field approximation of statistical physics, 

1 
l(x, g) = (19) 

1 + e x p { - z / g  } 

where z = [2-' II Vf(x, ~)p[2 _ ~]. The continuation par- 
ameter g is proportional to ~c in equation (13) and z is 
the input to the boundary cell. 

Since ~ controls the slope of the activation curve, the 
optimization process could be mediated by a phasic 



BAYESIAN MODEL FOR TEXTURE SEGMENTATION 

co BIob I Interblob I co BIob I 

2655 

Output to Extrastr iste Cortices 

Layer I1+111 

Layer IV 

Surface Complex 
cell (pyramidal) 

/ ~  Boundary Complex 
cell (pyramidal) 

J Axonal branching 
! 
~ , ~  Crossing axons 

(no interconnection) 

~ ,  On Simple ceil t Inhibitory Interneuron 
(stellate) (basket or double bouquet) 

~ '  Off Simple cell 0 Gradient Cell 
(stellate) (detect difference) 

Excitatory connection 

D Inhibitory connection 
(shunting inhibition) 

FIGURE 11. A hypothetical neural circuit for surface interpolation and boundary detection in VI: the LGN cells project to 
ON and OFF simple cells which then converge to complex cells. The surface complex cells are interconnected by the excitatory 
horizontal axonal collaterals. The gradient detectors compute gradients in the response of each channel, and they sum to 
activate the boundary complex cells which in turn can interrupt the mutual excitation of the surface cells by shunting inhibition. 

increase in the boundary cell's sensitivity. During each 
optimization, as ~ moves toward 0, the slope of the 
sigmoidal activation function of the boundary cell will 
slowly increase, converging to a step function at the end. 
This gradual increase in discriminability, coupled with 
the diffusive expansion of the surface signals, produces 
the gradual sharpening of  the boundary signals. 

One plausible neural mechanism for implementing 
this kind of phasic increase in sensitivity is the PGO 
waves that have been observed to propagate from the 
brain stem to the LGN and the occipital cortex 
during and after each saccadic eye movement (Steriade, 
Pare, Hu & Deschenes, 1990). These cholinergic waves 
appear to produce a phasic increase in arousal level 
leading to excitability enhancement in the visual cortical 
cells (Livingston & Hubel, 1981). The duration of  
each burst of these PGO waves is about 150-350 msec, 
consistent with the 100msec time-frame required for 
texture discrimination (Julesz, 1983) and the completion 
of  brightness filling-in (Paradiso & Nakayama, 1991). 
During the 250msec fixation period between two 

saccades, there are about 10 bursts of spikes (Gray 
& Singer, 1989). We can envision each burst of spikes 
corresponds to one gradient descent at a relaxation 
stage. Thus, the optimization process involving about 10 
relaxation stages can be completed during the fixation 
interval. 

CONCLUSION 

We suggested that texture segmentation is a part of the 
computational process for Bayesian surface inference. 
This computation can be described in a highly idealized 
sense as the minimization of  a certain energy functional. 
The dynamical processes involved in the gradual relax- 
ation algorithm used to minimize the functional are 
characterized by a gradual sharpening of the boundary 
signals and a simultaneous smoothing of the surface 
signals in a 4D spatial-spectral domain. 

The relevance of  this class of  models to the visual 
system in solving the ill-posed early vision problems 
has been suggested by a number of  workers (Poggio, 
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Torre & Koch, 1985; Koch, Marroquin & Yuille, 1985). 
Neural network models of similar favor have also 
been proposed by Grossberg and Mingola (1985). By 
introducing the proper psychological and physiological 
constraints, we establish a tighter link between the 
computational theory, neural network models and 
biological reality. The model provides a functional 
framework for understanding complex cells as boundary 
cells and surface cells in a surface interpolation system. 
The model also provides specific predictions on bound- 
ary and surface complex cells. Some of these predictions 
have been confirmed. 

We must recognize that the energy functional dis- 
cussed in this paper is a highly simplified and idealized 
description of reality. The actual working of  the brain, 
even at the level of preattentive vision, is far more 
complicated than any simple energy functional can 
possibly represent. Despite its limitations, the present 
simple model is illustrative of the basic characteristics 
of the system and can provide some basic insights to 
the processes of texture segmentation and surface 
interpolation in the primary visual cortex. 
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