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Abstract

The Infinite Hidden Markov Model (IHMM)
extends hidden Markov models to have a
countably infinite number of hidden states
(Beal et al., 2002; Teh et al., 2006). We
present a generalization of this framework
that introduces nearly block-diagonal struc-
ture in the transitions between the hidden
states, where blocks correspond to “sub-
behaviors” exhibited by data sequences. In
identifying such structure, the model classi-
fies, or partitions, sequence data according to
these sub-behaviors in an unsupervised way.
We present an application of this model to
artificial data, a video gesture classification
task, and a musical theme labeling task, and
show that components of the model can also
be applied to graph segmentation.

1 INTRODUCTION

Ordinary hidden Markov models (HMMs) characterize
data sequences as sequences of stochastic observations,
each of which depends on the concurrent state of a
Markov chain operating over a finite set of unobserved
states. HMMs are ubiquitous in time series modeling;
however, they impose relatively little structure on the
dynamics of systems they model.

Many process comprise several “sub-processes”, such
as a musical composition with several recurring motifs,
a dance with repeated gestures, even human speech
with common words and phrases. An HMM transition
matrix describing the dynamics of these processes will
exhibit nearly-block diagonal structure, since transi-

Appearing in Proceedings of the 12th International Confe-
rence on Artificial Intelligence and Statistics (AISTATS)
2009, Clearwater Beach, Florida, USA. Volume 5 of JMLR:
W&CP 5. Copyright 2009 by the authors.

tions between states in the same sub-process will usu-
ally be more likely than transitions between states in
different behavioral regimes. However, ordinary HMM
learning methods cannot bias the transition matrix to
be block diagonal and may not infer these important
relationships between states.

We present an unsupervised method that learns
HMMs with block-diagonal dynamic structure from
time series data. Neither the number of states, nor
the number of blocks into which states organize, is
specified beforehand. This technique is a general-
ization of the HMM learning technique presented in
(Beal et al., 2002) and (Teh et al., 2006), and it has
important new capabilities. First, it can isolate dis-
tinct behavioral regimes in the dynamics of tempo-
ral processes: the “sub-behaviors” mentioned above.
Second, it can partition, or classify, data sequences
into segments corresponding to the times when these
different sub-behaviors are executed. Finally, compo-
nents of the model offer a useful framework for related
inference tasks, including partitioning non-negative
integer-weighed graphs.

The technique we generalize, the Infinite Hidden
Markov Model (IHMM), described in (Beal et al.,
2002) and further formalized in (Teh et al., 2006)
(where it is called the HDP-HMM), extends HMMs
to Markov chains operating over a countably infinite
set of hidden states. The IHMM exhibits a charac-
teristic behavior in generated hidden state sequences,
in that the number of visited states always increases
with time, but a smaller subset receives a large propor-
tion of any repeat visits. This behavior arises because
the IHMM expresses a hierarchical Dirichlet process
(HDP) prior on the infinitely large transition matrix
governing transition behavior between states. Practi-
cally, this means that a finite data sequence of length
T will usually have come from a smaller collection of
M � T states, and that the IHMM posterior condi-
tioned on the sequence can exhibit meaningful transi-
tion dynamics over these M states while still retaining
flexibility over their exact number.



         545

The Block Diagonal Infinite Hidden Markov Model

Our generalization, the Block-Diagonal Infinite Hid-
den Markov Model (BD-IHMM), involves partitioning
the infinite set of hidden states into an infinite number
of blocks, then modifying the Dirichlet process prior
for each hidden state such that transitions between
states in the same block are usually more likely than
transitions between states in different blocks. Since fi-
nite data sequences will usually visit K �M blocks, a
BD-IHMM posterior can flexibly isolate sub-behaviors
in the data sequence by harnessing the model’s ten-
dency to group hidden states.

A number of extensions to the IHMM have been pro-
posed recently, including a “tempered HDP-HMM”
that exhibits a configurable bias for self-transitions
in the hidden states (Fox et al., 2008), a hierarchi-
cal model that uses an IHMM to identify system sub-
regimes that are modeled by Kalman filters (Fox et al.,
2007), and a model that shares a library of hidden
states across a collection of IHMMs that model sep-
arate processes (Ni & Dunson, 2007). To our knowl-
edge, there has been no effort to extend the IHMM to
express a prior that induces “block-diagonal” behav-
ior in the hidden state dynamics, though the dynam-
ics of our model will bear similarities to those of (Fox
et al., 2008) as the number of blocks K → M . More
broadly, a literature analyzing block-diagonal HMMs
exists (Pekergin et al., 2005), though most of its efforts
presume the transition matrix is known a priori.

2 THE MODEL

Like many characterizations of Dirichlet process-based
models, our account of the IHMM and the BD-IHMM,
depicted graphically in Figure 1, invokes the “stick-
breaking process” of (Sethuraman, 1994). The stick-
breaking process is a partitioning of the unit interval
into an infinite set of sub-intervals or proportions, akin
to snapping partial lengths off the end of a stick. Given
a positive concentration parameter γ, βn, the length of
interval n, is drawn via the following scheme:

β′n ∼ Beta(1, γ) βn = β′n
∏i−1
k=1(1− β′i), (1)

where metaphorically β′n is the fraction of the remain-
ing stick to snap off. When the proportions βn are
paired with outcomes θn drawn IID from a finite mea-
sure H, or atoms, the resulting discrete probability
distribution over the countably infinite set of atoms is
said to be drawn from the Dirichlet process DP(γ,H).
In the hierarchical Dirichlet process, the sampled dis-
tribution is itself “plugged into” subordinate Dirichlet
processes in the place of the measure H. Samples from
these subordinate DPs are discrete distributions over
the same set of atoms, albeit with varying probabili-
ties. Equivalently, reflecting the generative processes
in Figure 1, it is shown in (Teh et al., 2006) that it

is also possible to start with the original intervals β
and draw subordinate collections of intervals πm via
stick-breaking as

π′mn ∼ Beta (α0βn, α0(1−
∑n
i=1 βi))

πmn = π′mn
∏n−1
i=1 (1− π′mi),

(2)

where α0 is the concentration parameter for the sub-
ordinate DPs. Elements in each set of proportions
πm are then paired with the same set of atoms drawn
from H, in the same order, to generate the subordinate
Dirichlet process samples. Note that both the propor-
tions βn and πmn tend to grow smaller as n increases,
making it likely that a finite set of T draws from either
will result in M � T unique outcomes.

The generative process behind the IHMM can now be
characterized as follows:

β | γ ∼ SBP1(γ)
πm |α0,β ∼ SBP2(α0,β) vt | vt−1,π ∼ πvt−1

θm |H ∼ H yt | vt,θ ∼ F (θvt
),

(3)
where SBP1 and SBP2 indicate the stick-breaking pro-
cesses in Equations 1 and 2 respectively. Here, the
transition matrix π comprises rows of transition prob-
abilities sampled from a prior set of proportions β; se-
quences of hidden states v1, v2, . . . are drawn according
to these probabilities as in an ordinary HMM. Emis-
sion model parameters for states θ are drawn from H
and generate successive observations yt from the den-
sity F (θvt

). Note that pairing transition probabilities
in πi with corresponding emission model parameter
atoms in θ yields a draw from a hierarchical Dirichlet
process, as characterized above.

The BD-IHMM uses an additional infinite set of pro-
portions ρ, governed by the concentration parameter
ζ, to partition the countably infinite set of hidden
states into “blocks”, as indicated by per-state block
labels zm. For each state m, the stick-breaking process
that samples πm uses a modified prior set of propor-
tions β∗m in which elements β∗mn are scaled to favor
relatively higher probabilities for transitions between
states in the same block and lower probabilities for
transitions between states in different blocks:

ρ | ζ ∼ SBP1(ζ)
β | γ ∼ SBP1(γ) zm |ρ ∼ ρ

ξ∗m = 1 + ξ/ (
∑
k βk · δ(zm=zk))

β∗mn = 1
1+ξβnξ

∗
m
δ(zm=zn)

πm |α0,β
∗
m ∼ SBP2(α0,β

∗
m)

vt | vt−1,π ∼ πvt−1

θm |H ∼ H yt | vt,θ ∼ F (θvt
).

(4)

Note that
∑
n β
∗
mn = 1, and that states with the same

block label have identical corresponding β∗m. Here,
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Figure 1: Graphical model depictions of (a) the IHMM as described in (Teh et al., 2006) and (b) the BD-IHMM.

ζ = 1 γ = 10
α0 = 10 ξ = 10

ζ = 1 γ = 50
α0 = 10 ξ = 10

ζ = 5 γ = 10
α0 = 10 ξ = 10

ζ = 1 γ = 10
α0 = 1 ξ = 1

ζ = 10 γ = 10
α0 = 1000 ξ = 10

Figure 2: Truncated Markov transition matrices (right stochastic) sampled from the BD-IHMM prior with various
fixed hyperparameter values; highlighted hyperparameters yield the chief observable difference from the leftmost
matrix. The second matrix has more states; the third more blocks; the fourth stronger transitions between
blocks, and the fifth decreased variability in transition probabilities.

ξ is a non-negative hyperparameter controlling prior
bias for within-block transitions. Setting ξ = 0 yields
the original IHMM, while giving it larger values makes
transitions between different blocks increasingly im-
probable. Figure 3 depicts the generation of transition
probabilities πm described by Equation 4 graphically,
while Figure 2 shows some π transition probability ma-
trices sampled from truncated (finite) versions of the
BD-IHMM for fixed γ, α0, ζ, and ξ hyperparameters.

3 INFERENCE

Our inference strategy for the BD-IHMM elaborates
on the “direct assignment” method for HDPs pre-
sented in (Teh et al., 2006). Broadly, the technique
may be characterized as a Gibbs sampling procedure
that iterates over draws from posteriors for observation
assignments to hidden states v, the shared transition
probabilities prior β, hidden state block assignments
z, and the hyperparameters ζ, γ, α0, and ξ.

3.1 HIDDEN STATE ASSIGNMENTS

The direct assignment sampler for IHMM inference
samples assignments of observations to hidden states
v by integrating the per-state transition probabilities
πm out of the conditional distribution of v while condi-
tioning on an instantiated sample of β. Since the BD-
IHMM specifies sums over infinitely large partitions of

β to compute the β∗m, we employ a high-fidelity ap-
proximation via truncating β once its sum becomes
very close to 1, as proposed in (Ishwaran & James,
2002). With these steps, the posterior for a given vt
hidden state assignment invokes a truncated analog to
the familiar Chinese Restaurant process for Dirichlet
process inference twice, once to account for the transi-
tion to state vt, and once to account for the transition
to the next state:

P (vt = m |v\t,β, z,θ, yt, α0, ξ) ∝

p(yt | θm)
(
cvt−1m + α0β

∗
vt−1m

)

·

(
cmvt+1 + α0β

∗
mvt+1

+ δ(vt−1 =m)δ(m=vt+1)

)
cm· + α0 + δ(vt−1 =m)

, (5)

where cmn is the count of inferred transitions between
hidden states m and n in v\t, and the · index in cm· ex-
pands that term to

∑M
n=1 cmn. The delta functions in-

crement the transition counts in cases where self tran-
sitions are considered. Note: for simplicity of notation,
we will reuse cmn for the count of m → n transitions
throughout v in all forthcoming expressions.

When H is conjugate to P (yt | θm), explicit instantia-
tion of the θm emission model parameters is not neces-
sary. For brevity, this paper omits further discussion
of the emission model inference, which is no different
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Figure 3: A depiction of the BD-IHMM’s process for
generating transition probabilities—here, for transi-
tions out of hidden state 12. This state has been
assigned block label z12 = 3. (Note: hidden state
labels z are sorted here for clarity, and in the actual
model there are a countably infinite number of states
assigned to each block.) The shared transition prob-
abilities prior parameter β is modified by multiplying
proportions assigned to states in block 3 by the scalar
value ξ∗12, then renormalizing, yielding a new block-
specific parameter β∗12. Next, probabilities for transi-
tions out of state 12 are drawn conditioned on β∗12 and
the concentration parameter α0; some possible out-
comes are like-colored bars in the bottom graph. Note
transitions to states in block 3 are clearly favored.

from ordinary hierarchical mixture model inference.

3.2 SHARED TRANSITIONS PRIOR

For convenient bookkeeping, the “direct assignment”
inference method does not keep some useful informa-
tion. In particular, in order to sample the posterior
for β, we first need to know how many times qmn a
particular transition m → n was selected due to the
vt sampler “landing on” the original α0β

∗
mn mass al-

located to that transition in (5) rather than transition
count mass accumulated subsequently. In (Teh et al.,
2006), referencing (Antoniak, 1974), this is shown to
be distributed as

P (qmn|cmn, z,β∗, α0) =

s(cmn, qmn)(α0β
∗
mn)qmn

Γ(α0β
∗
mn)

Γ(cmn + α0β∗mn)
, (6)

where s(cmn, qmn) is the unsigned Stirling number of
the first kind.

We also require a partial instantiation of ρ, the dis-
crete distribution yielding block assignments for hid-

den states. If wk =
∑M
m=1 δ(zm = k) when summing

only over the M unique states visited during the hid-
den state sequence v, then ρk, the probability of draw-
ing a particular block label k out of the K unique block
labels belonging to those states, as well as ρnew, the
probability of drawing any novel block label, is Dirich-
let distributed as:

(ρ1, . . . , ρK , ρnew) ∼ Dir(w1, . . . , wk, ζ). (7)

After drawing qmn and ρ, we sample the posterior for
both (a) the β terms corresponding to the M visited
states and (b) βnew, the sum of β terms for all hitherto
unvisited states. LetK be the number of unique blocks
visited in v and rk =

∑M
m=1,n=1 qmnδ(zm = k)δ(zn =

k), a sum of within-block transitions. If we now com-
pute the ξ∗m as 1 + ξ/(ρzmβnew +

∑M
n=1 βnδ(zn=zm)),

thereby marginalizing over block assignments for the
unvisited states, our posterior can be formulated as:

P (β1, . . . , βM , βnew | q, z, ξ, γ) ∝
Dir(β1, . . . , βM , βnew; q·1, . . . , q·M , γ)

·
K∏
k=1

[
1 + ξ

/(
ρkβnew +

M∑
n=1

βnδ(zn=k)

)]rk

. (8)

Sampling this posterior is simplified if the
β1, . . . , βM , βnew are transformed to a new set of
variables G1, . . . , GK , g1, . . . , gM , βnew, where

Gk =
∑M
n=1 βnδ(zn=k), gm = βm

Gzm
; (9)

a block-wise sum of and within-block proportions of
β elements respectively. It can be shown that the gm
belonging to a single block are Dirichlet distributed
with corresponding parameters q·m, and that the Gk
and βnew have a density proportional to

βγ−1
new

K∏
k=1

G
−1+

PM
n=1 q·nδ(zn=k)

k

(
1 +

ξ

ρkβnew +Gk

)rk

.

(10)
We sample the above multidimensional density on
the K-simplex with the Multiple-Try Metropolis algo-
rithm (Liu et al., 2000), although for large q·n, scaling
Gk to be proportional to

∑M
n=1 q·n appears to yield a

very close approximation to estimates of its mean.

Once sampled, the Gk and gm variables are trans-
formed back into βm proportions, and βnew is subdi-
vided into several additional βm proportions for unvis-
ited states via a truncated version of the stick-breaking
process in Equation 1.

3.3 BLOCK ASSIGNMENTS

The posterior over assigning one of the M visited hid-
den states m to one of the blocks,

P (zm |ρ,v,β, α0, ξ) ∝ P (zm |ρ)P (v | z,β, α0, ξ),
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has two components. The left term is the prior proba-
bility of the block assignment, which may be sampled
via a truncated stick-breaking expansion of the ρ pro-
portions computed in the prior section. The right term
is the likelihood of the sequence of data assignments to
hidden states v. For smaller problems, the evaluation
of the second term can be shown to be O(M2) as

P (v | z,β, α0, ξ) =
M∏
m=1

∏M
n=1

Γ(cmn+α0β
∗
mn)

Γ(α0β∗mn)

Γ(cm·+α0)
Γ(α0)

. (11)

Note that the values of the β∗mn change with different
block assignments zm, as detailed in (4). For larger
problems, a different strategy for sampling the z pos-
terior, inspired by the Swendsen-Wang algorithm for
MCMC on Potts models (Edwards & Sokal, 1988),
changes labels for multiple hidden states simultane-
ously, resulting in vastly faster mixing. Space con-
straints permit only a sketch of this bookkeeping-
intensive technique: for each pair of states, we sample
an auxiliary variable indicating whether the bias for
transitions between the same block was responsible for
any of the transitions between both states. If this is the
case, both states and any other states so connected to
them must have the same label—in other words, their
new labels can be resampled simultaneously.

3.4 HYPERPARAMETERS

The hyperparameters α0, ξ, ζ, and γ are positive quan-
tities for which we specify Gamma priors. For α0,
the sampling method described in (Teh et al., 2006)
for the analogous IHMM parameter is directly appli-
cable. In the case of ξ, the likelihood term is again
(11), which does not permit straightforward sampling.
Fortunately, its posterior is amenable to Metropolis-
Hastings sampling and appears to exhibit rapid mix-
ing. Meanwhile, conditioned on the number of vis-
ited blocks K, the ζ posterior may be sampled via
the standard techniques of (Escobar & West, 1995) or
(Rasmussen, 2000) (see also (Teh et al., 2006)).

In traditional hierarchical Dirichlet processes, infer-
ence for the parameter analogous to the BD-IHMM’s
γ relies on marginalizing away β. The required inte-
gration is complicated in the BD-IHMM by the sum-
mations used in computing β∗m in (4). We use nu-
merical methods to capture the γ likelihood instead.
When the summed counts q·n described earlier tend
to be large, the auxiliary variable-based γ sampling
scheme for ordinary HDPs described in (Teh et al.,
2006) can be shown to represent a reasonable approxi-
mation of the BD-IHMM’s data generating process, at
least with respect to the effects of γ. Because large q·n
are not always present, though, especially for shorter
sequences, we achieve a finer approximation by apply-
ing a multiplicative adjustment to the γ value used in

(a) (b) (c)

(d)
!!" " !"
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Figure 4: Results on one 2000-step 2-D synthetic
dataset (a) exhibiting four sub-behaviors: dots (col-
ored by sub-behavior) are observations, black dot-
ted lines connect them in sequence. The matrix of
training-set transition counts inferred by the IHMM
(b) shows conflation of at least three pairs of hidden
states (yellow shading); the BD-IHMM learns the cor-
rect block structure (c). In (d), the sequence of sub-
behaviors executed in the training data: inferred (red
line) and ground truth (background shading).

this method’s likelihood density. This factor, derived
from tens of thousands of runs of the BD-IHMM’s
generative process with varying hyperparameters, is
a function of ζ and M . The use of a multiplicative ad-
justment allows the same sampling techniques applied
to ζ and α0 to be used with minimal modification.

4 EXPERIMENTS

4.1 ARTIFICIAL DATA

We compare the results of IHMM and BD-IHMM
inference on 100 randomly-generated 2-D datasets.
Each is generated by sampling the number of “sub-
behaviors” the data should exhibit, then the numbers
of states in each sub-behavior. These ranged from 2-4
and 3-9 respectively. Means of 2-D spherical Gaussian
emission models (σ = 1) were drawn from a larger,
sub-behavior specific Gaussian (σ = 6), whose mean
in turn was drawn from another Gaussian (σ = 4).
Transition probabilities between hidden states favored
within-block transitions at a rate of 98%, giving hid-
den state sequences within-block “dwelling half lives”
of around 34 time steps. Each dataset had 2000 steps
of training data and 2000 steps of test data. Figure
4(a) shows one set of sampled observations.

On each dataset we performed IHMM and BD-IHMM
inference with vague Gamma priors on all hyperpa-
rameters. Emission models used by both the IHMM
and BD-IHMM were the same spherical Gaussians
used to sample the data.
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Figure 5: Test-set log probabilities for the 100 syn-
thetic datasets for models learned by (a) the BD-
IHMM and (b) the IHMM; these were not significantly
different for this task (two sample t-test, p = 0.8).
In (c), adjusted Rand index scores comparing sub-
behavior labels inferred for the training data with
ground truth (c.f. Fig. 4(d)); over half have scores
greater than 0.95. Scores of 0 typically correspond to
complete undersegmentations, i.e. all data associated
with just one cluster.

Well after sufficient Gibbs sampling iterations for both
models to converge, we simply stopped the inference
and selected the last-sampled models for evaluation.
We “froze” these models by computing the maximum
likelihood transition probabilities and emission model
parameters from these draws. We then applied stan-
dard HMM techniques to these to compute the like-
lihood of test-set process data, conditioned on the
restriction that inferred trajectories could not visit
states that were not visited in the inferred training-
set trajectories. IHMM evaluation in (Beal et al.,
2002) is more elaborate: it allows the IHMM to con-
tinue learning about new data encountered during test-
ing. We chose our simpler scheme because we con-
sider it adequate to reveal whether both models have
learned useful dynamics, and because our approach fa-
cilitates rapid evaluation on many randomly-generated
datasets. Figure 5 shows that, overall, both the BD-
IHMM and the IHMM are able to model the dynam-
ics of this data equally well. Nevertheless, as shown in
Figure 4(b), the IHMM could be “tricked” into conflat-
ing states belonging to separate sub-behaviors, while
the BD-IHMM inferred the proper structure.

Given the state labels v1, . . . , vT inferred for sequences,
we can assign block labels to each observation as
zv1 , . . . , zvT

. If each block corresponds to a different
“sub-behavior” in the generative process, this new la-
beling is an inferred classification or partitioning of the
data by the behavior that created it. The partitions
may be compared with the true pattern of behaviors
known to generate the data. We employ the adjusted
Rand index, a partition comparing technique, in this
task (Hubert & Arabie, 1985). Numerous index scores
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Figure 6: (a) Selected downscaled video frames for
(top to bottom) batting, boxing, pitching and tennis
swing gestures. (b) First three dimensions of video
frames’ PCA projections, colored by gesture type.
(c) Sequences of sub-behaviors executed in one set of
training data: inferred by one of the model runs (red
line) and ground truth (background shading). Each
sub-behavior actually comprises numerous video clips
of the same gesture.

near 1 in Figure 5 indicate frequent close matches be-
tween the inferred classification and ground truth.

4.2 VIDEO GESTURE CLASSIFICATION

We collected multiple video clips of a person execut-
ing four different gestures for a motion-activated video
game (Figure 6). After downscaling the color video
frames to 21× 19 pixels, we projected the frames onto
their first four principal components to create data for
the IHMM and BD-IHMM algorithms.

For inference, parameters were similar to the artifi-
cial data experiment, except here the emission models
were 4-D spherical Gaussians (σ = 0.275). We re-
peated a 9-way cross-validation scheme three times to
collect results over multiple trials; training sets con-
tained around 6,000 observations. Subjecting these
results to the same analysis as the artificial data re-
veals similar compared test-set likelihoods and favor-
able training-set sub-behavior labeling performance
(Figure 7). Both models allocated around 45 hidden
states to describe the training data (combined mean:
44.5, σ = 5.0). We note that since both the BD-IHMM
and the IHMM use multiple states to describe each ges-
ture, inferred hidden state trajectories do not usefully
identify separate sub-behaviors in the data: adjusted
Rand indices comparing the IHMM’s inferred trajec-
tory labeling to ground truth sub-behavior labeling are
poor (µ = 0.28, σ = 0.036).
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Figure 7: Video gesture dataset log probabilities for
models learned by (a) the BD-IHMM and (b) the
IHMM; these were not significantly different (two sam-
ple t-test, p = 0.3). In (c), adjusted Rand index scores
comparing sub-behavior labels inferred for the train-
ing data with ground truth (c.f. Fig. 6(c)). Most er-
rors in labeling were attributable to one of the four
sub-behaviors being split into two.

4.3 MUSICAL THEME LABELING

To test the limits of the BD-IHMM’s sub-behavior
identification ability, we used the model to identify
musical themes in a rock song (Collective Soul, 1993).
Apart from the challenge of modeling acoustic infor-
mation, this dataset is difficult because the themes are
lengthy, and no theme is repeated more than four times
contiguously; some sections are only played once. It is
useful to learn whether the BD-IHMM can recognize
separate sub-behaviors in real-world data with such
limited repetition.

We prepared a representation of the musical data by
computing the cepstrums of 113ms windows (yield-
ing 2714 observations) of a monophonic signal created
by combining both stereo channels (Childers et al.,
1977). We isolated a distinctive quefrency band be-
tween 0.9ms and 3.2ms, smoothed the band across
time and quefrency with a 2-D Gaussian kernel, then
binned the quefrencies in each window into 20-bin his-
tograms, which, finally, we normalized to sum to 1.
The resulting signal appears in Figure 8.

For the hidden-state emission model for the normal-
ized histograms, we selected 20-D Dirichlet distribu-
tions with a shared, narrow fixed precision and means
limited to a fixed collection of 500 means generated by
running K-means on the quefrency histograms. For-
saking actual Dirichlet mean estimation for this some-
what ad-hoc, discrete prior enables simple and rapid
marginalization of the emission models.

We performed BD-IHMM inference on the dataset
29 times, achieving sub-behavior labelings like those
shown in Figure 8. Fluctuations in the labeling can
be attributed in part to vocal variation in the mu-
sic. We compared the labelings with human-generated

1:00 2:00 3:00 4:00 5:00

1:00 2:00 3:00 4:00 5:00

1:00 2:00 3:00 4:00 5:00

Figure 8: Data and results for the musical theme label-
ing task. At top, the time series used as input for the
model: normalized quefrency histograms (columns).
Below, three sub-behavior (i.e. musical theme) label-
ings for the data; inferred labels (red lines) are plotted
atop ground truth (background shading).

ground truth and achieved middling adjusted Rand
index scores (µ = 0.38, σ = 0.056) due mainly to
undersegmentation; whether the representation exhib-
ited meaningful variation for different themes may also
be an issue. Nevertheless, a qualitative evaluation of
the labelings consistently reveals the discovery of con-
siderable theme structure, as exemplified in Figure 8.
We conclude that the BD-IHMM is capable of isolat-
ing sub-behaviors in datasets with limited repetition,
though a task like this one may approach the minimum
threshold for this capability.

4.4 NON-NEGATIVE INTEGER
WEIGHTED GRAPH PARTITIONING

Due to the structure of the BD-IHMM, the counts
of transitions cmn are a sufficient statistic for infer-
ring the hidden state block labels z; the observations
and the actual ordering of the transitions in the pro-
cess’s hidden state trajectory are irrelevant. These
counts may be represented as non-negative integer
edge weights on a directed graph whose vertices cor-
respond to the hidden states, and analogously block
label inference may be understood as a partitioning
of this graph. With this analogy, we show how parts
of the BD-IHMM and its inference machinery may be
applied to a different problem domain.

Consider the U.S. Census Bureau’s 2000 dataset on
the daily commuting habits of Pennsylvania residents
(United States Census Bureau, 2000). This dataset
takes the form of a matrix of counts cmn of the number
of people commuting each day between municipalities
indexed by m and n. We may assume that this matrix
has a block-diagonal structure, since people are more
likely to commute between areas of shared economic
interest. By finding block labels for the municipalities
based on this data, we can identify these regions.

We apply the Swendsen-Wang derived label sampler
to the 2580-vertex commute graph, achieving the la-
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Figure 9: “Segmentsylvania” map showing locations
of Pennsylvania municipalities in the U.S. Census Bu-
reau’s 2000 daily commuter dataset (United States
Census Bureau, 2000). Colors show vertex groupings
achieved by applying BD-IHMM hidden state block
assignment inference to the commute graph. Nearly
all groupings are spatially localized; some colors are
reused or similar due to the large number of clusters.

beling result in Figure 9. 97% of the municipalities
are in blocks with 10 or more members, of which there
are 55. We offer no quantitative evaluation of this re-
sult here, but qualitatively the blocks are nearly all
geographically localized and centered around middle-
and large-sized urban centers, despite the algorithm’s
having no access to geographic information.

5 CONCLUSION

We have demonstrated a generalization of the Infi-
nite HMM of Beal et al. (Beal et al., 2002) (also
(Teh et al., 2006)) whose prior induces a clustering
effect in the hidden state transition dynamics. Pos-
terior samples of this model may be used to identify
characteristic “sub-behaviors” within a data sequence
and to partition input sequences according to these
behaviors. We have also shown that components of
the BD-IHMM may be used to partition non-negative
integer-weighted graphs. Future work may explore on-
line learning as well as applications of BD-IHMM com-
ponents to relational data analysis.
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