

c© Carnegie Mellon University, May 4, 2004.

Symphony of Vision

Student projects in computer vision at Carnegie Mellon

Volume 1

May 4, 2004

c© Carnegie Mellon University, May 4, 2004.

Contents

Introduction
Tai Sing Lee 3

An automated jigsaw puzzle solver
Ka Wing Ho & Kermin E. Fleming 5

Height detection in clothing store using video camera
Vidit Nagory 14

Computer vision based sign language recognition for numbers
Kenny Teng, Jeremy Ng & Shirlene Lim 18

Creating computer generated caricatures
Dylan Goings & Jean Sun 25

Real-time soccer ball detection
Daniel Kim & Kevin Caffrey 31

A comparison of background modeling techniques
Michael Schultz 38

Object tracking by on-line learning of motion models
Chytra Pawashe 44

Filling in missing parts of images
Andres Ivan Jager 50

1

Common image set compression
Sylvain Paillard 54

Texture characterization
Stephen Roos & Sarah Schipul 60

Single image stereogram image extraction using SSD disparity measurement
Daniel Hershey 66

Recovering unseen images: seeing with the “magic eye”
Sean O’Loughlin 69

Finding Waldo
Ilsun Lee & Laura Semesky 74

Mishkin face recognition
Michael Mishkin 80

Face recognition using SIFT features
Rohit Patnaik 84

Winning patterns in Go
George Fraser 90

2

Introduction

This volume is a collection of the student term projects in 15-385 – the undergraduate
course in computer vision at Carnegie Mellon this year. The students had approxi-
mately five weeks to do the term projects, either individually or in teams, starting
after Spring break until the last day of class. Given that they were taking at least
three other courses at the same time and had other term projects to tackle with, each
student had about 30 to 40 hours to propose a project, carry out the basic back-
ground research, develop a strategy and idea, implement it in Matlab, test it, write
a technical paper, and give a 20 minute presentation. The fact that they can do all
these in such a short period of time is nothing short of spectacular. The reports of
all their projects, unedited, are now included in this volume to celebrate their accom-
plishments. The papers speak volumes about their creativity, imagination, ingenuity,
technical fluency and expertise, as well as their great stamina and raw talents.

What is most remarkable is that these are not graduate students, but rather un-
dergraduates. In fact, over half of them are sophomore students, and from diverse
backgrounds: computer science, electrical and computer engineering, biomedical en-
gineering, mechanical engineering, cognitive science, psychology and physics. The
only course prerequisites are a course in programming and a course in calculus and
matrix algebra, although signals and systems are strongly recommended. They must
have a good mastery of basic programming and mathematical skills, and above all,
they must have the passion to learn. Otherwise, they could not survive the rigor of
the course, as they would have to, in the span of one semester, learn the fundamen-
tals of signals and systems, pattern analysis, statistical inference, machine learning,
Matlab programming, most of the basic concepts as well as the newest and the most
advanced techniques in computer vision. For many of them, this was the first time
they have ever encountered linear system theory, convolution and correlation, pyra-
mid and wavelets, Fourier transform and frequency analysis, covariance and principle
component analysis, Bayesian classification and inference, independent component
analysis and blind source separation, spectral graph cut methods and Markov net-
work methods, expectation maximization and clustering, boosting and discriminant
analysis, Bayesian belief network and particle filtering, matching and recognition,
active contour and dynamic active vision, not to mention the psychology and the
biology of human and animal vision. Despite the vast intellectual territory that they
had traversed in the short span of four months, they did not learn and understand
those materials superficially or merely in concept, but, through six demanding prob-

3

lem sets, as well as a term project of their choosing, mastered the concepts and
techniques well enough that they are able to apply them to solve real and challenging
problems.

This is almost an impossible feat. When you read these papers, despite their short-
comings, you should recognize and admire what amazing achievements they represent.
Each paper in this collection is a piece of remarkable music on its own right, and to-
gether they form a beautiful and powerful symphony, spanning almost the entire
dynamic range in computer vision, and representing the blossoming of the creative
processes in these powerful young minds.

Conductor and Instructor:

Tai Sing Lee
Associate Professor
Computer Science Department
and Center for Neural Basis of Cognition
School of Computer Science
Carnegie Mellon University
Pittsburgh, PA.
May 4, 2004.

Teaching Assistants:

Jiayu Pan and Hua Zhong
Ph.D. students in Computer Science
Computer Science Department
School of Computer Science
Carnegie Mellon University

4

5

An Automated Jigsaw Puzzle Solver

Ka Wing Ho Kermin E. Fleming
kwho@andrew.cmu.edu kfleming@andrew.cmu.edu

Carnegie Mellon University Carnegie Mellon University

Abstract

We propose an automated method of
solving jigsaw puzzles. The classic jigsaw
puzzle involves assembling an assortment
shaped pieces into a single contiguous picture.
Rather than focusing on solving the puzzle using
the visual information contained on each piece to
realize a completed picture, the naïve approach
used by most human puzzlers, our approach
utilizes the shapes of the pieces to determine the
solution of jigsaw puzzle. To this end we view
the puzzle as a graph of edge connections. We
then apply various physical heuristics to remove
edges from the edge graph. Then, we rank the
edges of the graph using a curve-matching
algorithm. Finally, we recursively construct the
puzzle by applying additional physical
constraints to the edge graph. Our algorithm has
demonstrated the ability to solve a twenty-four
piece puzzle.

Introduction

The jigsaw puzzle debuted in the
eighteenth century, and has captured the fancy of
both children and adults across the generations.
The jigsaw puzzle consists of a collection of
shaped pieces that, when assembled, form a
picture, with typical puzzles containing between
a few dozen and a few thousand pieces. With
some intuition and a little practice, it is possible
for human puzzle solvers to learn techniques that
can greatly reduce the time needed to correctly
assemble a puzzle. Typical human strategies (at
least the ones that authors used to solve the
puzzles in question) involve a combination of
pictorial and physical matching, e.g. assembling
uniquely colored pieces and assembling the
puzzle boarder first. However, when using a
computer to piece together a jigsaw puzzle,
many intuitive human strategies become difficult

and, in some cases, impossible. For example,
physically placing and comparing the edges of a
puzzle via filtering may require rather intensive
computation, thus necessitating the development
of other, faster edge matching strategies.

In 1964, Freeman and Garder, [1] made
the first attempt to solve a jigsaw puzzle using
shape information, and since that time several
improvements have been made to improve both
the robustness and to increase the maximum
number of pieces that can be solved. Most
recently, in 2002, Goldberg, Malon, and Bern [2]
produced an automated solver capable of
completing a 204-piece puzzle in 20 minutes.

Our approach to solving puzzles most
closely resembles that of Wolfson [3], whose
solver was capable of assembling a 100-piece
jigsaw puzzle. We make use of a set of
simplifying assumption suggested by Wolfson
[3]. Namely, we assume (1) that the puzzle has a
well-defined rectangular boarder, (2) that each
interior piece has four neighbors (one each on
the piece’s left, right, top, and bottom), (3) that
pieces join with their neighbors by the concave
portion of one piece locking into the convex
portion of the other piece, (4) that four
neighboring pieces for a corner ‘+’ at their
mutual border. However, we differ from
Wolfson in that we do not construct the boarder
of the puzzle first. Rather our algorithm
constructs the puzzle by attempting to limit the
number of edge matchings that it must ‘guess’.
For example, if somehow the algorithm knows
that a piece must be located at a certain position,
it will place the piece at that location. Edge and
corner pieces (with the exception of the initial
start location) do not receive any sort of priority
from our algorithm. Additionally, our algorithm
uses backtracking, an element not present in
previous some previous algorithms [1], [2].

Our approach relies heavily on the
concept of curve matching. Essentially we seek

6

100 200 300 400 500 600 700

50

100

150

200

250

300

350

400

450

500

550

describe each edge in a manner that facilitates a
comparison with other edges so that a best-fit
matching can be obtained. To accomplish this
goal we used a modified version of the ‘chain
codes’ as described in [4]. Once chain codes
have been determined we use a simplistic version
of the string matching proposed by Wolfson [5].

Our algorithm has demonstrated the
ability to solve a twenty-four piece jigsaw puzzle
in roughly fifteen minutes (this figure includes
substantial preprocessing time, the actual solving
algorithm requires on the order of thirty
seconds). We have not tested our solver on other
puzzles, and we used the tested puzzle to assist
in the development of our algorithm. Therefore,
some additional testing would better confirm the
generality and robustness of our algorithm.

Methods

Our algorithm can be partitioned into
four steps:

1) Data Collection: Although not technically
part of our algorithm, out method of data
collection merits some discussion as it helped to
motivate the development of some critical parts
of our algorithm. Here, we produce a digital
representation of a physical jigsaw puzzle which
lends itself to our solving techniques.
2) Preprocessing: In this step, our algorithm
discerns important information about the nature
of the pieces of the puzzle. Specifically, we
classify the edge types of the puzzle, determine
the locations of the corners of the puzzle, encode
the edges of each puzzle piece as a chain code,
and calculate the corner-to-corner distance and
arc length of each edge.
3) Affinity Matrix Construction: We use the
results of step B to create an affinity matrix of
edge matches. Using the data, we eliminate a
large number of choices, first by using several
forms of physical discrimination and second, by
using applying some logical constraints.
4) Puzzle Assembly: In this stage we use a
recursive mechanism to assemble the puzzle
starting with one of the corner pieces. To avoid
incorrectly assembling the puzzle and to allow
some error tolerance, we use backtracking to
correct any mistakes made in putting together the
puzzle.

A. Data Collection

Representing a physical object in a
digital format can be a difficult problem. Most
objects found in nature are continuous, that is
natural objects exhibit continuous and smooth
transitions. However, despite the high levels of
precision and attempts to induce smoothness and
continuity, digital objects are inherently discrete,
and thus a certain amount of error, be it noise or
otherwise, is introduced into a digital
representation of a natural object.

To create a reasonable digital
representation of a puzzle, we used a high
resolution scanner to scan in each individual
piece. Initially, we attempted to scan the side of
the pieces which contained the picture because
we anticipated using the pictorial information as
a means of assembling the puzzle. However, this
method resulted in somewhat ambiguous piece
boundaries. Additionally, the scanner had some
difficulties in faithfully representing the pictorial
data (Fig.1). Upon encountering these obstacles,
we revised our general approach and focused on
curve matching rather than texture and picture
matching. As we only use the shapes of the
puzzle pieces, we were able to make some
adjustments in our scanning procedure. We
decided to scan the backsides of the pieces, to
provide more uniform image on which our
algorithm could operate more robustly. To
increase the edge contrast of the pieces, we
applied a black background to the scanner to
reduce noise around the piece edges. This
resulted sharper piece boundaries.

Next, we used a threshold to transform
each of the puzzle images into a binary matrix
representation (Fig. 2). Our algorithm actually
received these binary puzzle piece

representations.

 (a)

(b)
Fig . 1 . (a) A
representative image of
the first method. (b) The resulting binary image.
Note the noise around the edges.

7

50 100 150 200 250 300 350 400 450 500 550

100

200

300

400

500

600

50 100 150 200 250 300 350 400 450 500 550

100

200

300

400

500

600

 (a) (b)
Fig. 2. (a) A representative image obtained using
the second data collection method. (b) The
resulting binary image. Note the noise reduction
from figure (1).

B. Preprocessing
Preprocessing begins with the

classification of the edges of each puzzle piece.
There are three broad categories of edge
classification: flat edge, convex edge, concave
edge. The edge type is calculated by
threshholding the sum of the rows and the sum
of the columns of the binary image. Each edge
type produces a particular sum spectrum, for
example a flat edge produces a somewhat broad
region of nearly constant sums at the edge of the
piece. We determined these thresholds
empirically, based on the size of the puzzle
piece, and they seem to be reasonably robust as
the thresholds had a margin of error of roughly
30%. As an example of how the edges are
classified, consider figure 3.

Fig. 3. This sum spectrum corresponds to the
columns of Fig. 2.b. Note that the flat region on
the left corresponds to the flat left edge in Fig.
2b. and the peaky region on the right
corresponds to the concave right edge in Fig. 2b.

After each edge is classified, our
algorithm next determines the location of the
corners of each piece. To detect the corners, we
employ a version of the Harris corner detector.
Due to the sheer size of the puzzle images
(typically on the order of 700 x 700 pixels) the
solver utilizes a large Harris filter to adequately
capture the corner images. However, the use of
the large Harris filter results in somewhat broad
regions of peak filter response. Thus, to ensure

that four different corners are selected (rather
than selecting the same corner four times), when
our algorithm discovers a corner, it suppresses
the filter response of the area surrounding the
corner. Thus, the algorithm is guaranteed to
discover four unique corners. Due to noise and
other non-idealities in the binary images, the
corner detector does not necessarily detect the
exact location of the image corner, but does
identify a point within five pixels of the actual
corner.

 (a) (b)
Fig. 4. (a) The Harris filter response for a puzzle
piece. Note peaky corner response. (b)Detected
corners plotted on the original piece image.

Next, the solver determines the edge
length of each edge of the puzzle. The edge
length is simply the Cartesian distance between
the two corners of each edge. Our algorithm
uses edge length to help construct the affinity
matrix.

The next step of the preprocessing
phase is the characterization of the curves of the
edges. This part is mainly accomplished through
contour construction and curve matching. In
order to get an accurate encoding of all the
edges, we have to first obtain a good contour
map, which has one along the contours and zero
in all other places in the puzzle. The algorithm to
construct the contour map is as follows:

--First, look for the left most pixels with
one in each row and set that pixel to one in the
output image.

--Set a flag to 1 and keep reading from
left to right along the row until you see the first
zero. Set the last pixel with value 1 the program
saw to 1. Set the flag back to zero.

--If we see another one before we
reached the end of the row, go back to step one.
Keep repeating the two previous procedures until
you have scanned all the rows.

--After scanning all the rows, repeat the
whole procedures for all the columns.

8

Essentially, the above algorithm is just setting
the boundary of pixels with value 1 in each row.

 The next step is encoding the edges of
each piece into chain code. A chain code is a
string of numbers each of which represents offset
angle along the contour. To simplify string
comparison and to compensate for small errors in
chain code assembly, we quantize the angles into
16 levels, as shown in Fig. 5. Each of them has a
tolerance of +/-(pi/16). Using the corner location
information from the corner detector, we locate a
particular corner in a puzzle. First, we start from
the bottom left corner and gradually climb up the
left edge of the puzzle till we reach the top left
corner. In each step up the edge, the program
scans all the surrounding pixels in the contour
map by sweeping in 360 degrees with a fixed
radius. Then, among all the points it picks up, the
algorithm computes the deviation of each point
from the current point as expressed by an angle
measured in clockwise direction. The algorithm
then picks the point whose angle deviates the
least from the previous angle of deviation. The
angle of deviation is the key which is then
encoded into a corresponding number.

Fig.5. This figure illustrates the idea of picking the
point that deviates the least from its previous angle

Assuming that in the previous step, we swept at a and
chose point b. At b, we swept again and picked up
both point c and point d .Here, we would choose point
c as the next point because the difference between the
angle of deviation between a and b is closer to the
angle of deviation between b and c than that between
point b and d

Having computed the chain code of
each edge on all the pieces, the program will
further compute the difference between each
consecutive entry in the chain code. This string
of new number is called the ‘first difference of
the chain code’ as described in [4]. The first
difference of the chain code is the final
description that we will use in the curve
matching procedure. One thing special about the
‘first difference’ is that it is orientation invariant.
As we scanned in the pieces, they are not likely
to be perfectly aligned. It may be tilted for a
small degree. This small error in alignment could
pose a serious problem when chain code is used
directly for comparison. By instead measuring
the rate at which the slopes of the edges change,
this problem can be overcome because of its
special property of orientation invariant.
 For every puzzle piece, we encode the
piece in four orientations by rotating it by 90
degrees in clockwise direction three times. For
each orientation, we encode both the left edge
and the right edge of the rotated piece.
Therefore, for each piece of puzzle, we would
have a total of eight different strings of numbers
describing the four edges of a puzzle piece. On
rotating the puzzle pieces three times by 90
degrees, we are actually encoding each edge
twice. One representation is encoding as if the
edge is a right edge and the one is for the left
edge. These two seemingly redundant
representations can account for the fact that a
puzzle piece may be connecting to another piece
in a different orientation from which it is
scanned in. So, the right edge on a scanned-in
puzzle piece may end up connecting with the
right edge of another piece after rotation of 90
degrees twice. Through encoding the edges in
these two different orientations, we can tell the
orientation of each piece with respect to others.
The details in computing the orientations will be
discussed in details in the section of assembly.

One important factor determining the
accuracy of the chain code is the radius of the
circle that the program sweeps in. Different radii
have been tried when computing the chain code.

9

For a radius that is too small, say 2 pixels, the
sweeping may not be able to look far away
enough to pick up a point. In these cases, the
program may end up picking its own previous
point. In overcoming this issue, we can increase
the radius. As a secondary measure to ensure that
we are not actually picking the previous point,
we have also set a threshold to the maximum
size of the angle of deviation. If for some steps,
the smallest possible deviation is larger than the
threshold, we would go one step backward and
pick the second best point in the previous step.
Another issue when making the measurement is
that the coordinate fed back from the corner
detector may not exactly be on the contour. So,
the program should look around its surrounding
10-20 pixels on the same row and pick the most
suitable one that is on the contour. For instance,
if the program is in the process of scanning its
left edge, it should try to pick the leftmost point
on the contour that it can see and pick the point
in a similar manner for the right edges. That is
the way to make sure that the detection actually
started on the contour.

(a)

(b)

 Fig. 6. The ‘climbing’ along the left and
right edges of a puzzle piece. (a) the original

scanned-in image and (b) the piece after
rotations.

In the final stage of preprocessing, our
algorithm determines the arc length of each edge.
Edge arc length measures the physical length of
the curve between the two corners of and edge.
In calculating the chain codes, we took care to
maintain a nearly constant sweep radius. Thus,
we take the length of the chain code as a rough
estimation of the arc length of an edge.

C. Affinity Matrix Construction

During the preprocessing step, our
solver calculates a volume of physical data about
each edge of each puzzle piece. We exploit the
knowledge gained during the preprocessing
phase to eliminate edge matchings from
consideration. We use a matrix to represent
possible edge matchings, with a non-zero value
representing an edge matching that we consider
to still be a possibility. Initially, all edge
matchings are considered. First, we eliminate
entries that, for physical reasons, obviously
cannot match. In this phase, we remove flat
edges from consideration, since flat edges must
be boarder pieces. Additionally, we remove
matchings between edges on the same piece,
since clearly we cannot bend the puzzle pieces
during assembly. With this reduced matrix, we
next remove matchings whose edge
classifications do not allow a fitting. From
assumption (3), we can eliminate edge matchings
that pair two convex edges or two concave
edges. At this point, we have removed from the
matrix all illegal edge matchings.

We use two cycles of thresholding to
eliminate edges that are physically unlikely to fit
together. From assumption (4), we consider that
pieces must come together to form a ‘+’ shaped
junction. Thus, if two edges match, the distances
between their respective corners should exactly
match. Similarly, since the two pieces should fit
together snugly, their arcs should not only be
congruent, but should also have similar lengths.
Ideally, if two edges match, the differences of
their edge and arc lengths should be exactly zero.
However, since we cannot assume that our data
is perfectly accurate, for reasons noted above, we
must allow some tolerance in our thresholding.
With the assistance of some empirical evidence,
we determined that tolerances of fifteen pixels

10

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

10 20 30 40 50 60 70 80 90

10

20

30

40

50

60

70

80

90

and four chain lengths (this roughly corresponds
to fifteen pixels, as chain lengths are somewhat
variable) would be suitable for our
discrimination. First, we sieve our matrix of
edge matchings using edge length. All
matchings whose edges’ lengths differ by more
than fifteen pixels are eliminated from
consideration. Then, we filter the matrix by
considering arc length. As before, any
matchings whose edges’ arc lengths differ by
more than four chain lengths are removed from
the matrix. At this point, all remaining edge
matchings are assigned chain code scores as their
entry in the affinity matrix. Chain code scores
are computed by calculating the sum of squares
error of the first difference of the matching edges
chain codes. In the case that the edges have
different length chain codes (and most of them
do), the solver calculates the difference of the
chain code lengths; the smaller chain is then
‘slid’ over the larger chain one length at a time
and the chain code score is calculated at each
step. The minimum of these chain code scores is
selected as the overall score for the edge
matching.

At this point, the affinity matrix the
affinity matrix has been greatly reduced.
Although, we can no longer remove edge
matchings for physical reasons, we can still
remove edges for logical reasons. Our
reductions to the affinity matrix have resulted in
forcing certain edge matchings to occur, that is,
some edges can only be mated with one other
edge. Thus, we deduce that the two edges must
match together in the final puzzle, and we can
remove any other edges matchings involving the
pair. In this manner, we can further simplify the
affinity matrix.

 (a) (b)
Fig. 7. (a) The affinity matrix after thresholding
out edge length matching impossibilities. (b) The
final affinity matrix.

D. Puzzle Assembly

The affinity matrix saves us a lot of
work for assembly. The matrix has been reduced
to the point that almost only one mate exists for a
given edge. Thus, we can look up edge
matchings directly in the matrix rather than
doing any computational matching. We
represent the puzzle solution in a 47X47 array
structure, which we will call it the ‘big picture’
henceforth. The reason for this structure is that
we do not assume the dimensions of the whole
puzzle in general though we can make the
assumption that we are solving a 24 pieces
puzzle. Therefore, if we manage to pick a corner
piece and put it in the middle of the 47X47 array
structure, we can span in any directions by as
many as 24 steps. In general, we can represent
the solution of a jigsaw puzzle by using a (2*w-
1) by (2*w-1) array where w is the number of
jigsaw puzzle pieces. For each cell in the 47X47
array, there will be 3 numbers that gives the
details of each piece after assembly. The first one
corresponds to the piece index, the second one is
the number of 90-degree rotations in clockwise
directions and the third one is the number of
neighbors of that particular piece.

We have incorporated an algorithm that
is similar to the A* algorithm in the assembling
of the pieces. A* allows backtracking in cases
where the program makes mistakes in the middle
of the assembly, which allows us to more
robustly solve the puzzle. Essentially, the
algorithm just recursively picks the best possible
guess in each step and it keeps growing from that
guess till it runs into an error, or until it runs out
of pieces (i.e. a solution is obtained). Here is the
algorithm:

--First, get a corner piece and use that as
the seed to build the whole puzzle. Input the seed
as a parameter into the recursive method.

In the recursive method:
--Look at the rows that correspond to

the edges of the chosen piece. Pick those rows
that contain at least one non-zero entry. If there
isn’t any row that has non-zero entries, return
with an error.

--Sort the list of non-zero entries in
ascending order. Dequeue the element with the
lowest score and propose that it is the next piece
to be implanted into the big picture. Compute the
appropriate orientation and coordinate of the
proposed piece in the big picture.

11

--Check to see if there is any piece that
is already placed in the surroundings of the
proposed coordinate. If there is any, verify that
the piece to be implanted will actually match
those pieces.

--If the proposed piece to be implanted
matches with all of its existing surrounding
pieces, update the information in the big picture
to reflect the changes. Input this updated copy of
the big picture into the next level of recursion.

--If there is a conflict with its
surrounding piece, go back to step 3 and pick the
next available entries. If there isn’t any, return
with an error.

--Recurse until there are no more pieces
left.

Orientation is another major issue in
solving the jigsaw puzzle. Not only does it allow
us to see how the computer actually assembles
the pieces, it also helps in the verification step to
ensure that two neighboring pieces connect. By
enumerating all the possible connections
between edges of different orientations, we
manage to compute the number of 90 degree
clockwise-rotations needed in order to fit two
pieces together. The formula is as follows:

(6-p+a+aori) mod 4

where p = the edge number to which the newly
 implanted piece will connect to the

 current piece

 a = the edge number of the current
 piece to which the newly implanted
 piece is supposed to connect to

 aori = the number of 90 degrees clockwise-
 orientation that the current piece has
 gone through

Another problem that the program ran into
during assembly is running into a ‘sandbox’.
Imagine that the program is building the puzzle
in an inward spiraling manner. It starts off at the
lower left corner, go two rows up, then two
columns to the right, two rows downward and
finally one column to the left. The next piece that
the program will pick is likely to be the center
piece of this 3X3 squares. Afterwards, the
program will break because all four edges of the
center piece are already found. Thus, the
program itself runs into a box from which it
cannot escape. Whenever we come into such

situation, we would look in the affinity matrix
for any row that contains non-zero entries,
substitute that edge in as the current piece and
searches for the next available edges again. This
technique solves this issue of ‘sandboxing’
during assembly.

Results

Fig. 8. This is the final output of our solver.
Note that each number corresponds to a puzzle
piece. This is a correct solution

The program managed to give a correct solution
starting from any of the four corners.
Orientations can also be included in the solution
since it is directly available from the 47X47 ‘big
Picture’. For each run, it took about 20 minutes
on a typical cluster machine. Most of the time is
spent on computing the chain code and detecting
the corners. The ‘big picture’ mentioned in the
section of assembly is fed into another function
to determine the appropriate locations of the
pieces in the end.

Discussion and Conclusion

We chose this project because we
thought it would both relatively simple and
somewhat rewarding. We were wrong on one
count: developing a robust automatic jigsaw
puzzle solver is exceptionally difficult. Jigsaw
puzzle solving is a rich problem in
computational geometry and pattern recognition,
and clever, insightful techniques are required to
solve even the smallest puzzles. These
techniques were, of course, not immediately
obvious, and it took us roughly a week of

12

thinking and testing to come up with a
rudimentary algorithm. After a week of coding,
we developed a working solution and spent a few
days generalizing it as best we could. In terms of
work division, both members were present for
ninety percent of the time spent on the project.

Although we learned a good deal about
integrating code and group development, curve
matching stands as our greatest learning
experience. Curve matching was the most
difficult technique employed in this project and
it took the largest amount of time to implement.
Curve matching by itself is a pretty neat idea.
However, obtaining the representation of a curve
is the pre-requisite for a successful curve-
matching. This has prompted us to learn the idea
of chain code. In the process of finding the chain
code, we were also pushed to come up with an
effective way to represent the contour of the
puzzle pieces. Through this process, we have
learned to formulize a problem into a step by
step solution.

Although our solver manages to
assemble a 24 piece jigsaw puzzle, it has several
major weaknesses. The most obvious and
debilitating weakness is a lack of generality. The
solver uses several hand tuned parameters to
complete its task. Although these parameters
make some sense (especially those involved in
the calculation of the affinity matrix), attempts to
solve other jigsaw puzzles would likely end in
failure. A particular point of weakness is the
function that determines the classification of an
edge. This function heavily depends on
empirically calculated parameters to operate
correctly. A possible solution for this problem is
to use machine learning. Possibly, a large library
of puzzles could be examined, and the solver
could learn how to choose correct edge
recognition parameters based on the size of the
puzzle piece.

Another weakness of our solver is its
runtime. The solver takes roughly thirty minutes
to solve the twenty-four piece puzzle.
Considering that Malon, Goldberg, and Bern [2]
solve an one-hundred piece puzzle in three
minutes, our code runs quite slowly. Although
some of the slowdown is caused by Matlab, the
main reason that our code runs slowly is our over
use of filtering. To ensure that we obtain
accurate corner locations, we use the Harris filter
several times. However, filtering is extremely
computationally expensive, and thus if we could
cut down on it we could drastically improve the

speed of our solver. A possible solution is to
develop a means of translating the corner
locations when we rotate the pieces.

Our curve matching algorithm, perhaps
our greatest triumph, was not perfect.
Occasionally, sometimes without warning, the
chain codes produced would have extremely
high scores. Indeed, our implementation of the
curve matching in this project is pretty crude.
Curve matching is a useful technique applied
extensively in archeology to assemble broken
pieces. In some other works that were shown in
[2],[3], curve matching is applied in a more
general manner to objects which don’t
necessarily have angles in it. Therefore, instead
of computing the chain code separately for four
edges separately, we can generalize the problem
by computing just a set of chain code for the
whole contour. Afterwards, we can do string
matching to obtain the portions to which two
contours match. In this way, we wouldn’t have to
go into rotating the image and finding the corner
every time. This would essentially save a lot of
computation.

While our solver succeeds at a single
puzzle, there are several future improvements
that we could make. First, we should test more
puzzles to ensure that our solver produces correct
results for other puzzles, including those of
different sizes. Additionally, we could develop a
mechanism by which our solver could support
randomly oriented pieces. Currently, our solver
outputs a solution matrix. While simply
achieving a correct solution is a great success,
we could upgrade the user-friendliness of our
solver by having it actually outputting an image
of the completed puzzle.

In conclusion, we developed an
automated jigsaw puzzle solver capable of
solving a twenty-four piece jigsaw puzzle solver.
Using a combination of heuristic techniques and
curve-matching, our solver is capable of
outputting a correct puzzle solution in
approximately twenty to thirty minutes.

13

Some Pictures:

Fig .9 The Actual Jigsaw Puzzle that we solved

 (a1) (a2)

 (b1)

 (b2)
 Fig.10. Some Example Piece: (a1): backside of
piece 1 (a2) Front side of piece 1; (b1) backside
of piece 15, (b2) front side of piece 15

Reference

[1] H. Freeman and L. Gardner. Apictorial
jigsaw puzzles: The computer solution of a
problem in pattern recognition. IEEE Trans on
Electronic Computers 13 (1964) 118-127.

[2] M. Bern, D. Goldberg, and C. Malon. A
global approach to Automatic Solution of
Jigsaw Puzzles. Proc. Symposium on
Computational Geometry, 2002, 82-87.

[3] H. Wolfson, E. Schonberg, A. Kalvin, and Y.
Lamdan. Solving jigsaw puzzles by computer.
Annals of Operations Research 12 (1988), 51-
64.

[4] R. Jain, R. Kasturi, and B. Schnuck.
Machine Vision. 1995, 423-434.

[5] H. Wolfson. On Curve Matching. Annals of
Operations Research 12 (1990), 483-489.

Biography:

Ka Wing Ho is from Hong Kong and is a
sophomore in the bachelor program of Electrical
and Computer Engineering. His major interest is
in machine learning and computer security.

Kermin Fleming is a sophomore in the Electrical
and Computer Engineering Department at CMU.
His interests included distributed architecture
and hardware verification. Kermin hails from
Lexington, Kentucky.

http://neevia.com http://neeviapdf.com http://docuPub.com

http://docuPub.com http://neevia.com http://neeviapdf.com

Height Detection in Clothing Store Using Video Camera

Author Vidit Nagory

Carnegie Mellon University

Email: vnagory@andrew.cmu.edu

Abstract

In this paper I develop a method to find out the

heights of customers entering a clothing store. For a

clothing store like GAP and Banana Republic it would

be very helpful if they knew the size of the customers

who are entering their stores. For example, a GAP

store could be doing very well having huge sales, but

now we get the information that 80% of the customers

entering that GAP store wear clothes of Large Size

whereas 90% of the sales in the store have been in the

medium category. This information could prove to the

management that there is a problem with clothes in

their large category because people are not buying

them. Using this information the management could

then take steps in finding out what the problem is and

how it could be solved.

1. Introduction

 Our goal is to develop a system that finds the

heights of all the people entering a store. This data then

could be then used to generate a database for the store

that gives the store statistics of people belonging to a

size range. For example the following data might be

generated that shows the number of people belonging

to a particular size that entered the store on that

specific day:

 The solution to this problem involves tracking

people as they enter the store and calculate their

heights. The tracking of people ensures that a single

person is not counted twice. The solution also needs to

have some sort of fast background modeling technique,

so that the location of people can be detected by simple

background subtraction.

 Another constraint of this problem is that the

solution has to be general enough to work in all the

stores. The store should be easily able to install the

camera system without much and if possible any

calibration. Preferably a cheap camera should be used

to solve the problem so that the stores do not incur

expenses in buying expensive camera.

 To solve this problem we can either store all

the images recorded in a day and then analyze them

later. This would require additional hard disk costs. So

a solution that works in real time is preferable.

 The following paragraphs outline the

techniques I tried to solve this problem and then the

final technique that I chose. All the merits and

problems of all the techniques are also mentioned.

2. Background Modeling

 The easiest and fastest way to find a person

moving in front of a camera is background subtraction.

So we have to always have a picture of the background

stored in the memory.

 For background subtraction to work in a

changing environment we have to constantly update the

background. For example consider the scenario that we

have a fixed picture of the background taken in the

morning, now if we are extracting the foreground

objects by background subtraction, this method might

work till the evening. In the evening the whole image

will get darker and the entire image might be detected

as foreground if we subtract the image of the

background taken in the morning from it. So there is a

need to constantly update the background.

 There are many papers with techniques for

adaptive background modeling available on the

internet. Some of the techniques I tried are given as

follows:

14

common
Note
Completed set by common

common
Note
Accepted set by common

common
Note
Marked set by common

common
Note
Completed set by common

http://neevia.com http://neeviapdf.com http://docuPub.com

http://docuPub.com http://neevia.com http://neeviapdf.com

1. Median Value Pixel: This technique

involves storing all the images of the day.

Then we take the median value of each

pixel taking values from all the images. For

example if three images are [1 1 1], [1 2 3],

[2 4 6] Then the image with median values

would be [1 2 3]. This technique assumes

that most of the images seen in a day were

of the background, so that the median value

of a pixel would always correspond to the

background. The problems with this

technique are:

• It is really slow

• It calculates a single background

picture, thus will cause problems

with images in which the illumination

has changed. However with proper

thresh holding it seems to give

reasonable results with even such

images. In addition we could

calculate a background image for a

set of images recorded in every 20

minutes, to reduce such illumination

change problems.

• It assumes that most pictures are of

the background, which in the real

case might be an invalid assumption

• It does not work in real time and

needs all the images to be fed into the

program to calculate the background.

2. Mode Value Pixel: This technique is the

same as the Mean Value Pixel except that

the pixel value in the background image is

the mode of all those pixels. This technique

has the same problems as mentioned with

the Mean Value Pixel.

3. Deviation Thresh hold: In this technique we

start with one initial picture of the

background. Now when the next frame is

read, we compare the new frame with the

stored background pixel by pixel. If the new

value of the pixel – old value of the pixel is

within a certain thresh hold we replace the

old value of this pixel with the new value,

considering that there is a minor

illumination change in the background.

However if the new value is outside the

threshold, we assume that this pixel belongs

to the some object in the foreground, so we

take the old value of the pixel which we

believe is the background.

This method gives really good results. The only

problem is that it is slow as it has to operate on all the

pixels in the image.

4. Constant Update: This method also starts with one

initial image of the background. Now when we get a

new frame, we compare the new value of a particular

pixel with an old value. Then we calculate the

deviation of the new value from the old value. Based

on the deviation we calculate x which ranges between

0.5 and 1. If the deviation is large x is large and vica

versa. Now we calculate the new value of the pixel as :

x*(old value of pixel)+(x-1)*(pixel value new frame).

The problem with this method is that lots of 1 pixel

noise can come into the picture. This considerably has

bad effects on the results of this method. Another

problem is that it is slow.

5. Final Method Chosen: At this point I realized that

the speed of the algorithm would always be slow if I

operated on each pixel, like I have done in all the

methods mentioned before. I figured out that to make it

faster I would need to operate on a group of pixels at

the same time. Now the only change that could be

happening from one frame to the next would be the

subject appearing in the new frame or the subject (the

person whose height we have to find out moving in the

image). Now if by background subtraction and using

some basic techniques I can get a boxes containing all

foreground objects, then I can make my new

background image= the new frame read in, and then

replace all the pixels in these boxes with the pixels in

the old background.

This method worked really well. The algorithm was

really fast, as I did not have to compare all the pixels.

The results of the background were not as clear as with

the methods mentioned earlier, but were good enough

to be used as background for the height detection

problem.

3. Boxing

This is the method used to detect objects in the

background. After subtracting the background from the

new frame we get an image result. Then using a good

thresh hold I create a binary image. Then I run a

blocker program over the binary image that takes out

noise. The blocker program sums up 5X5 blocks in the

image. If the sum is below a threshold then the entire

block is made 0 else its made 1. This method removes

15

http://neevia.com http://neeviapdf.com http://docuPub.com

http://docuPub.com http://neevia.com http://neeviapdf.com

the noise. Removing all noise is very important for the

box detection method that I am going to mention now.

*Image to illustrate the boxing concept

Now we take sum of rows starting from the top row. If

the sum changes from 0 to some other value or some

value to 0 we know that this is a line of the box, and

store these values at which the change occurs. We

know that these values correspond to the top and

bottom edges of the boxes. What we don’t know is the

number of boxes that are between these lines.

*After the row sum mentioned above

Now we find the sum of vertical colums just in between

these lines. If the sum again changes from 0 to some

other value, or vica versa, we know that these are the

vertical lines of the boxes that contain our foreground

objects.

*After the column sum

Now in between these vertical lines we again search for

the horizontal row changes, by summing up the rows

between these column numbers. This way we find the

box that contains the foreground object

*Image showing all the objects found

*Image showing the final boxes around all foreground

objects

16

http://neevia.com http://neeviapdf.com http://docuPub.com

http://docuPub.com http://neevia.com http://neeviapdf.com

The boxing technique works really fast as it operates

on many pixels at one time. To begin with it operates

on (sums) one whole row and then a large part of a

column and then a part of a row. This speed allows us

to work in real time.

4. Tracking

 Tracking is an essential part of the project. You have

to ensure that you enter a person’s height in the

database only once. That is while the person is entering

the store you don’t count him twice. So you have to

track the person until he crosses the camera.

Tracking a person seemed to be a hard problem when

many people were walking together. So I just went on

to solve the problem of one person walking a

considerable distance in front of the next person, so

that they both do not walk side by side ever.

We know that when a person moves towards the

camera, he starts moving down the image. The

following picture illustrates this concept:

The small dot is a person far from the camera, and the

big oval is a person closer to the camera, as you can see

the big oval is closer to the bottom of the image. This

shows that as a person moves towards the camera he

also moves closer to the bottom of the image. I used

this information to set a threshold when I want to track

the person for his height detection. I said that if the

bottom edge of the box holding this person has crosses

row 350 start tracking the person. I assume that no

other person will cross this 350 thresh hold until this

current person being tracked crosses the camera and

hence is not present in the image anymore.I wait for the

current person’s bottom edge to equal the bottom most

row of the image and then I stop tracking this person

and wait for the next person to come in the image.

 This high thresh hold was set because the

results of boxing improved considerable after the

persons bottom edge had crossed 350. Below this

number at times there would be several boxes covering

the person and will give us bad results as I will mention

later.

4. Height Detection

 Height detection is the basic goal of the

project and now we mention how this is done. Our

problem is that our system has to work in all the stores,

so we cannot rely on calculating the height based on

the geometry of the camera as the camera could be

placed at different heights and angles. Calibrating the

camera could be a tedious job, and a clothing store man

might not be able to do it.

 So to solve this problem, what we do is, we

make our primary subject walk across the camera to

begin with, and then we feed the system with this

person’s height. The program then calculates all the

relations based on the height of this person. Now the

system is ready for any person to walk through and it

will be able to detect his/her height with a high level of

accuracy. The following paragraphs explain the details

and mathematics behind how it is done.

 When we track the first person, we get a set of

points (x,y) where x is the height of the box holding the

person’s image and y is the row number that

corresponds to the bottom edge of the box. If we plot

these points for a single subject we see that we get

almost a linear line showing that the relationship

between the x and y is linear. To find the exact linear

relationship we find a best fit line for all these points as

shown below:

If the line is y=ax+b

Then

 








b

a
=

































∑

∑

∑ ∑

∑∑
−

i

i

i

ii

i i

i

i

i

i

i

y

yx

x

xx
1

2

1

 This way we form a linear relation between

the height of the box and the row in which bottom edge

of the box lies. Please note that we even know the

height of our first subject. Therefore now we know that

a certain box height with its bottom edge at a certain

row corresponds to a certain real height. We know that

as the bottom edge of the box moves down the image

bigger box heights correspond to smaller real heights.

 Now to calculate the height of the next person

who walks in we do the following. When the next

person walks in, we start tracking him. In each frame

17

http://neevia.com http://neeviapdf.com http://docuPub.com

http://docuPub.com http://neevia.com http://neeviapdf.com

we get the box height of the box that holds this person

(hnew) inside it and we also get the row corresponding

to the bottom edge of this box (bottomnew). Now we

use this bottomnew to calculate the height of box of the

first person had he been at this bottomnew using the

equation that we derived earlier. This box height, call it

old box height can be derived as follows:

oldboxheight=(bottomnew-b)/a

We also know our first subject’s height (heightold),

now the height of this person (heightnew) can be

calculated as follows:

heightnew/heightold=hnew/oldboxheight

heightnew=(hnew*heightold)/oldboxheight

To find the final height of this person, we take the

average of all the frames in which his height was

detected when he was being tracked.

5. Results

The results have been very good. The height

of people has been detected with an error of less than

an inch. The following pictures show a few results.

In the following picture the subject’s height is 5 feet 3

imches, and he is used to calculate all the relations.

In the next picture the subject’s height is 6 feet 3

inches.

The subject’s height is detected to be 6 feet 2 and a

half inches, with an error of half an inch.

The system was tried on many other locations to

make sure that it works in all environments and the

results were always good with error less than 1

inch.

The system takes a frame a second, and can

calculate the height based on that. A frame a

second can be supplied by a really cheap camera,

so the system meets that constraint.

Also no calibration is required by the store, as the

system calibrates itself based on the height of the

first person. The store could just have one of their

employees walk in whose height is known at the

starting of the day.

The system works in real time also.

6. References

[1] “Real Time Tracking of Multiple People Using

Continuous Detection” by David Beymer

common
Pencil

common
Note
Completed set by common

 18

Computer Vision Based Sign Language Recognition for Numbers

Kenny Teng, Jeremy Ng, Shirlene Lim
kth@ece.cmu.edu, jwng@andrew.cmu.edu, shirlene@cmu.edu

Abstract

Sign language was created to enable
communication between people with hearing and
speech disabilities. However, this created a
communication barrier between the people who uses
sign language as their ONLY means of
communication and others who doesn’t know sign
language. The main cause of this communication
breakdown is the different grammar and rules of sign
language that is not intuitive to those who lack
knowledge in sign language.

In this paper, we propose a system that

automatically recognizes and classifies an image of a
hand signing a number. The unique grammar and
rules of sign language makes number representation
in sign language different than what is normally used
by people without knowledge of sign language.

Two methods for recognition and classification of

the number representation in American Sign
Language (ASL) is presented – boundary contour &
medial axis (skeleton & thinning).

1. Introduction

Sign language is one form of communication for
the hearing and speech impaired. Similar to spoken
language, there is no universal sign language. Sign
language is itself a separate language with its own
grammar and rules. Some signs are expressed as
static gestures while others incorporate some
dynamic hand movements. For static gestures, the
prominent sign is captured within a specific time
frame. For dynamic gestures, a sequence of finger
and hand positions needs to be identified and
analyzed in order to be recognized.

The focus of our project is on static gestures with

a single hand. We strive to detect a hand signing the

sign language representation of the numbers from 0
to 9.

Section 2 explains the initial challenge of locating

the hand in the image. Section 3 explains how we
determine the general orientation of the hand. Section
4 gives a brief overview of the two recognition
methods that we implemented. Detailed explanation
of the two methods used will be presented in Sections
5, 6, 7and 8.

2. Locating the hand

There were many ways to solve the problem of
locating the hand in the images. The hand detection
method that we implemented was fast and simple.

The hand detection method that we implemented
was fast and simple. Initially, a video stream of the
static background is obtained and a mean background
is computed from the different frames. This
background template is saved and is going to be used
every time with every single incoming frame from
the video stream to obtain the foreground. An
arbitrary threshold is then used on the resulting
foreground image to eliminate noise on the picture,
and at the same time creating a binary image of the
foreground.

We used two hand location methods. For the

boundary contour implementation, we scan the image
from top to bottom (starting first from left to right).
The first black pixel that we encounter is set as the
“left” side of the hand. We then scan the image from

Figure 1: Foreground extraction by subtracting background from image

-

=

 19

top to bottom again, this time from right to left. The
first black pixel that we encounter is then set as the
“right” side of the hand. Next, we do a horizontal
scan from left to right starting from the top of the
image, within the vertical boundaries previously
defined. The first black pixel that we encounter is
then set as the “top” of the hand. We assume the
hand extends from the bottommost part of the image,
thus there’s no cropping of the image to locate the
“bottom” part of the hand.

For both our medial axis implementation –
skeleton and thinning, we start with a horizontal scan
from bottom to top. First black pixels that are
encountered are then stored into an array. Thus, we
would have an array with the left most black pixel of
the hand (from bottom to top) in the array. The same
is applied from right to left starting from bottom to
top. Once done, the minimum of the array storing the
“leftmost” pixels of the hand is set as the “left” side
of the hand. The maximum of the “rightmost” pixels
is set as the “right” side of the hand. The “topmost”
pixel in both the arrays is then set as the “top” of the
hand.

3. Orientation Detection

Another issue we encountered, particularly for our
boundary contour algorithm, was the orientation of
the hand. Different orientations of the hands may
distort the results obtained and may distort the
classification of that method. Thus, we implemented
a self-correcting orientation algorithm.

We start by a rough approximate of the center of

mass (COM), using a simple heuristic based on the
geometric shape of the cropped hand. Then, three
scan lines are shot from the left and another three
from the right. The two pairs of pixels that are
located on the left and right edge of the hand are
recorded. From there, the position vectors of those
points are computed and the general direction vector
of each set of three is determined (please refer to
figure 3). We then average the orientation vectors to
obtain one final orientation vector. Then, the cut-off
line is set as the orthogonal vector of the orientation

vector, and passing through the COM. The COM is
then recomputed and adjusted to be the middle point
of the cut-off line. From there, we can determine the
starting and the ending points (left most black pixel
intersecting the cut-off line and the rightmost black
pixel intersecting the cut-off line) for our boundary
contour generation.

4. Method Overview

Different techniques have been used to analyze
and classify the hand gestures, namely boundary
contour, skeletonization and thinning.

4.1 Boundary Contour

Boundary contour (as we call it) is the process of
determining the Euclidean distance of any point on
the edge of an image to the center of mass (COM).
We used this method to differentiate fingers and non-
fingers as fingers have a distinctive length which will
enable us to easily determine whether a certain point
is a finger, thumb or neither.

4.2 Skeletonization

Skeletonization is the process for reducing
foreground regions in a binary image to a skeletal
remnant that largely preserves the extent and
connectivity of the original region while throwing
away most of the original foreground pixels.

COM Draw vector to
obtain image
orientation

Average
orientation vector

Draw line
perpendicular
to orientation
vector and
crosses COM

Recompute
Center of Mass

Figure 2:
Locating the hand from the
binary image.

Figure 3: Determining the orientation of the hand using vectors

Starting point Ending point

Figure 4: Determine the distance from edges to
COM

 20

To see how this works, imagine that the

foreground regions in the input binary image are
made of some uniform slow-burning material. Light
fires simultaneously at all points along the boundary
of this region and watch the fire move into the
interior. At points where the fire traveling from two
different boundaries meets itself, the fire will
extinguish itself and the points at which this happens
form the so called `quench line'. This line is the
skeleton. Under this definition it is clear that thinning
also produces a sort of skeleton.

4.3 Thinning

Thinning is a morphological operation that is used
to remove selected foreground pixels from binary
images. It can be used for several applications, but is
particularly useful for skeletonization. It is
commonly used to tidy up the output of edge
detectors by reducing all lines to single pixel
thickness. Thinning is normally only applied to
binary images, and produces another binary image as
output.

The behavior of thinning is determined by the

structuring elements used for the specific points
being “thinned”.

5. Boundary Contour

The cut-off points obtained from the orientation
determination process are used as start point and end
point of an edge detection heuristic. We cycle the
points along the edge of the binary image, while
saving them in that sequence, and at the same time
computing the Euclidean distance between that point
and the COM.

The peaks (maximum) are the furthest point from the
COM, that is, they represent the positions of the tip
of the fingers.

5.1. Outputs from Boundary Contour

Here are some outputs from the boundary contour
algorithm, showing an inclined four, and a seven.
Next steps would be the classification of those
outputs.

5.2. Classification for Boundary Contour

From the graphs, we determine the height of the

maximum peak. The minimum difference between
the maximum and the closest minimum is computed.
If that value is above 20% of the highest finger, it is
encoded as ‘1’ whilst peaks below that threshold are
classified and encoded as ‘0’.

For example, [1 1 1 1 1] will be categorized as

five fingertips, thus representing the number ‘5’.

Figure 5: The skeleton is a line of points that are no nearer to
one point than another

Figure 6: Equidistance skeletons of basic shapes

Figure 7:
Structuring elements used for thinning

Figure 9:
The distance from
each pixel to the
COM is then plotted.

 21

5.3. Results from Boundary Contour

For thinning, we ran tests for 5 sets of hands of
different color, orientation and size. A video clip of a
hand signing an average of 10 numbers over a period
of time was also used. Correct matching for thinning
were dramatically better than skeleton but performed
a little under if compared to boundary contour.
Skeleton had a matching rate of ~80%.

Boundary contour has a fairly high accuracy of
classifying the numbers is because the shape of the
hand for the different numbers is really well defined
with sharp changes. That is why, when the hand is
orientated different in the z-plane, we lose some of
those sharp changes and boundary contour starts
failing.

6. Equidistance Skeleton

There are two ways of skeletonization the hand
structure. We used both the equidistance skeleton and
the thinning method for our project.

To implement the equidistance skeleton method,
we used MATLAB’s morphing function.
MATLAB’s morphing function requires us to invert
the colors of the binary image. Morphing the binary
image of the hand, we obtain the skeletal
representation of the hand.

To implement the thinning method, we also used

MATLAB’s morphing function.

6.1. Output from Equidistance Skeleton

Those are outputs for skeletonization showing
number four and eight respectively.

6.2. Classification for Equidistance Skeleton

For the equidistance skeleton implementation, we
needed to trace through the skeleton and store the
values in a data structure in order to identify/classify
the hand. To move along the skeleton, we use a
window to determine the next valid pixel to move to.

We classify each pixel as we move along the

skeleton using identifiers such as “endpoints”,
“branch” and “normal points”. “Endpoints” is
classified as the pixel at which there are no other
valid neighboring pixels. “Branches” are classified as
the pixel at which it has more than one valid
neighboring pixel. This pixel is then marked so that
after reaching an endpoint of one of the branching
pathways, our window tracking would return to the
branch point and move along the next valid pathway
from that particular pixel.

Values of importance are the coordinates of the

pixels, the distance from starting point, the distance
from the nearest branch point and branch point
coordinates. Storing values inside arrays, we then

Inverted

Peaks encoded as:
1 1 1 1 1

Peaks

Threshold to be classified as
finger:
<20% encoded as 0
>20% encoded as 1

Morphed

1

2

3 4 5

6

Figure 12:
The window used to determine the
next “valid” neighbor.

Figure 13:
The window is then placed at the
starting point (bottom most) and scans
through the skeleton. Each branch
point is recorded and marked.

Figure 11:
Morphed image to
form skeleton

Figure 10: Peaks above threshold encoded as ‘1’ and
peaks below threshold encoded as ‘0’

 22

2 2 2 2 1

DETECTED: 5

Figure 14:
Endpoints a
certain distance
away from starting
point is encoded
as ‘2’, ‘1’ and ‘0’.

analyze the arrays by comparing the distance of each
pathway we traced.

Using the maximum distance as reference,

distances that are ¼ of the maximum distance stored
will be categorized as a thumb, thus encoded as a ‘1’.
Distances that are more than ½ of the maximum
distance is categorized as a finger, thus encoded as a
‘2’. Other invalid distances are then classified as a
‘0’. Based on the encoding, we determine the number
the hand represents. For example, [2 2 2 2 1] will be
classified as detecting the number ‘5’.

6.3. Results for Equidistance Skeleton

We ran our program with 5 sets of hands of
different color, orientation and size. We also ran a
video clip of a hand signing an average of 10
numbers over a period of time with our program.
Correct matching between the original number and
the detected number was less than 50%. It was an
approximate average of ~40% correctness.

We attribute the low performance of this

algorithm to the many extra branching paths in the
skeleton. In the future, we believe the performance of
this algorithm can be improved by applying an extra
skeleton “cleaning” step to remove all the small
branching that were extraneous. Due to time
constraints, we did not have time to implement this
extra feature into the program to enhance its
performance.

7. Thinning

To implement thinning, first, translate the origin
of the structuring element (middle) to each possible
pixel position in the image. If foreground and
background pixels in the structuring element exactly
match foreground and background pixels in the
image, the image pixel underneath the origin of the

structuring element is set to background. Otherwise it
is left unchanged.

7.1. Outputs for Thinning

Those are outputs for the thinning algorithm showing
number four and eight respectively.

7.2. Classification for Thinning

For the thinning implementation, the classification
stage is almost similar to that of the equidistance
skeleton. The same process of tracing through the
skeleton is also needed. However the algorithm is
less complex since we do not need to take care of
split ends as perceived from the skeleton image.

 (a) (b)
Figure 15: (a) Split end at the endpoint of the branch of a skeleton,
(b) endpoint of a branch of from thinning

 Basically, we calculate the length of each branch,
getting rid of insignificant branches which have
length shorter than a given threshold. Based on the
longest branch, we calculate how many short
branches and how many long branches. Long
branches would represent stretched fingers while
short branches represent folded fingers. I would then
code them in terms of binary values as 1 for stretched
fingers and 0 for folded fingers.

Figure 8: Thinning also produces a skeleton

 23

Based on the binary values, we would be able to
classify what number does the hand represents. There
are some special cases which need to be taken care
of. For an example, a short branch could exist at the
right most part of the image. This branch could
represent a thumb and thus should be coded as 1
instead of a 0.

7.3. Results for Thinning

For thinning, we ran tests for 5 sets of hands of
different color, orientation and size. A video clip of a
hand signing an average of 10 numbers over a period
of time was also used. Correct matching for thinning
were dramatically better than skeleton but performed
a little under if compared to boundary contour.
Skeleton had a matching rate of ~70%.

Although devoid of branching problems like

equidistance skeleton did, it still had problems due to
the “front” and “back” tilted hand positions. The
result of forward and backward tilted hand would
distort the binary shape of the hand, thus producing a
shorter than normal length, which sometimes is
wrong interpreted by the program.

Another problem is the lack of branching. For

folded fingers, the lack of branching made the
program fail to recognize the folded fingers among
the outstretched fingers thus wrongly interpreting
them. Unlike equidistance skeleton where slight
bumps and extensions of the hand would produce
branching, thinning sometimes failed to detect the
small curves and bumps of folded fingers.

8. Conclusion & Discussion

Once we were able to classify the data obtained
from images, we moved onto parsing a streaming
video. We weren’t able to classify the signs in real-

time because the morphing, calculation and
classifications took time to complete for each frame
we captured.

We parsed a video clip of a hand signing the

different numbers and for each frame we would test it
against our program. Each frame and result is then
stored and compiled into an AVI file. Once
completed, the AVI file was converted to MPEG
format. Altogether we have AVI files containing the
results of the video clip against our 3 algorithms.

Among the three algorithms, boundary contour
was the most reliable and stable. The equidistance
skeleton performed worst among the three
algorithms. We attribute the performance level of the
equidistance skeleton to the fact that the skeletons
had a lot of “noise”. There was a lot of branching
which were confused as a key branch point
representing branching of fingers. Thus, results
weren’t as stable and reliable. Thinning performed
reasonably well due to the fact that it had more “test”
cases in the program. It was more carefully tested
against more possible cases and classified
accordingly. It also did not have the problem of
“noise” in the form of “branching” as that of the
equidistance skeleton method.

Overall it was an interesting project and all three
of us certainly enjoyed ourselves exploring ways of
implementing the algorithms and classifying the data
we obtained. Our project of classifying a hand
signing the sign language representation of numbers
using the three algorithms: Boundary contour,
Equidistance skeleton and Thinning was successfully
implemented.

9. Acknowledgements

We’d like to extend our thanks and appreciation
for all the help we received during the course of the
semester. Particularly, we’d like to thank Prof. Lee
and for providing good feedbacks to us and helped us
along the way. We’d also like to thank Ellen Lai for
contributing images and video clips of her hand to
aid us in diversifying our database.

10. References

 [1] Koichi Ogawara, Soshi Iba, Tomikazu Tanuki,
Yoshihiro Sato, Akira Saegusa, Hiroshi Kimura and
Katsushi Ikeuchi, “Recognition of Human Behavior using
Stereo Vision and Data Gloves”, 3rd Institute of Industrial
Science (Univ. of Tokyo), Robotics Institute (Carnegie

Short branch

Insignificant branch

Longest branch

Figure 16: An example of how the branches are being
classified. This particular image represents the number eight
and is coded as [1101].

 24

Mellon University), Research Division (Komatsu Ltd.) and
Univ. of Electro-Communications.

[2] Nobuhiko Tanibata, Nobutaka Shimada, Yoshiaki
Shirai, “Extraction of Hand Features for Recognition of
Sign Language Words”, Osaka University.

[3] James MacLean, Rainer Herpers, Caroline Pantofaru,
Laura Wood, Konstantinos Derpanis, Doug Topalovic,
John Tsotsos, “Fast Hand Gesture Recognition for Rea-
Time teleconferencing Applications”, University of
Toronto, University of Applied Science.

[4] “Morphology – Skeletonization/Medial Axis
Transform”,
http://homepages.inf.ed.ac.uk/rbf/HIPR2/skeleton.htm

[5] “The Gesture Recognition Homepage”,
http://www.cybernet.com/~ccohen/

Kenny Teng is a Junior in
Electrical and Computer
Engineering at Carnegie Mellon
University. He is from a tiny
island in the middle of Indian
Ocean, called Mauritius. Kenny
is very interested in Computer
Vision and Image Processing,

and would like to pursue a career in that direction.

Jeremy Ng is a Junior in
Electrical and Computer
Engineering at Carnegie Mellon
University. He is very
interested in computer vision,
image processing and computer
graphics. He is an international
student from Malaysia.

 Shirlene Lim is a junior in
Electrical & Computer
Engineering, double majoring in
Biomedical Engineering at
Carnegie Mellon University.
Shirlene is passionate about
technology that assists and
improves people's lives. She is

originally from Kuala Terengganu, Malaysia.

25

Creating Computer Generated Caricatures

Dylan Goings
Physics

Carnegie Mellon University

Jean Sun
Computer Science

Carnegie Mellon University

Dylan@cmu.edu Jsun@andrew.cmu.edu

Abstract

We present a program using a training set of
frontal face images to create a caricature of a new
face by exaggerating the differences in spatial
relations of the new face to the training set (the
“average face”). This was accomplished using
Principal Component Analysis (PCA) and a morphing
algorithm based on the orientation of line
“landmarks." Our program was successful in warping
an image according to non-average features, but did
not create a good caricature in the well-known sense
of the word.

1. Introduction

A caricature is commonly thought of as a severely
exaggerated, “cartoonish” portrayal of a human face.
The exaggerated features are those that differ from our
perception of the average features of a human face,
specifically the spatial dimensions and orientations of
the main features like eyes, nose, mouth, forehead,
cheeks, teeth, ears, etc., and they’re relative relations to
each other.

Our goal was to use image analysis techniques to
be able to take a picture of a human face and create a
caricature of that face. In accomplishing this objective
we feel that we would somewhat be teaching
computers to create art, much as caricatures drawn by
humans are often used in artistic applications such as
comic strips and for sentimental value at events such
as country fairs. The method we chose to accomplish
this task was through the use of a face database and
Principal Component Analysis (or PCA).

In order to exaggerate facial features that differ from
the norm or average features, we have to have a
definition of the average. To create a description of the
average human face, we used a database of face images
gathered from several different sources. For our later
PCA analysis, it was important to have all of the faces
be fully frontal (i.e. the person is staring straight at the

camera). We then decided on a set of points, or
landmarks, representing key characteristics of a human
face, such as the location of the eyes, lips, jaw line,
etc.

PCA is an analysis technique for computing the
variances, or correlations, between samples in a data
set. For example, in a sample of people comparing
height to weight, the data is likely to have a strong
correlation between these two variables. This
correlation is given by the Covariance matrix of the
data, defined as:

()()Tyiyi

n

i

mymy
n

−−=Σ Σ
=1

1
 (1)

where n is the number of samples, or data points,

iy is the ith sample, T means the transpose, and ym
is:

i

n

i
y y
n

m Σ
=

=
1

1
 (2)

The covariance matrix is symmetric and can be
decomposed using Single Value Decomposition into a
matrix whose columns are the eigenvectors of Σ, and a
square diagonal matrix whose nonzero elements are the
eigenvalues of Σ. These eigenvectors represent the
direction of correlation, and the eigenvalues are
representative of how correlated the variables are (larger
eigenvalues means stronger correlation). Figure 1[1]
shows an equivalent sample of data with the first
principal eigenvector and its orthogonal axis projected
onto the data.

26

Figure 1

In the example case of the study of height vs.
weight the eigenvector “directions” don’t actually have
any physical meaning, since the data are just abstract
values for a physical measurement. But in the case of
a face image, by considering the locations of specific
features, such as the outline of the eyes, the variations
in the data computed with PCA yield eigenvectors
whose directions actually have physical meaning –
they point along the face. Because of this, we can use
the eigenvectors to exaggerate the facial features by
morphing the image along those directions.

After generating exaggerated feature components,
we used a Feature-Based Image Morphing technique[2]
to graphically alter the original face picture to the
“caricature.”

Next we will explain our method for exaggerating
the feature components and go more into depth on the
image morphing technique. Then we will explain our
results and discuss problems and future improvements
that could be made on our technique.

2. Methods

2.1 Creating an average face

First, we defined a set of 99 landmark points to
describe the important facial features. These points
outlined the eyes, eyebrows, nose, lips, jaw line,
hairline, and the top of the hair. Next, we collected a
set of fully frontal face images from several image
databases1, and hand marked all of the landmarks on
each image. The hand-marking ensured that all of the

1MIT CBCL face set, Carnegie Mellon Computer Vision database,
NBA.com player’s database, Harvard face database
landmarks were placed very consistently across the face
images to produce a better average.

To do a PCA of the faces, they first had to be
aligned and scaled relative to each other, since the
images were compiled from several sources and
included different sized pictures, and faces that were
not all oriented in the same fashion. To align the faces
we employed PCA again, by computing the covariance
of just the landmarks describing the eyes. The primary
eigenvector from this computation points along the
axis of the eyes, and its magnitude gives us a scaling
factor to use comparatively with those of the other
faces.

After aligning the N number of faces, we have a set
of N 99x2 matrices, where each row represents the x
and y position of one landmark in the face. We then
average all of these face matrices together to create an
average, or mean face. Figure 2 shows a plot of the
mean face landmarks with connecting lines (contours)
between the points which define the different features
listed above.

Figure 2

Along with the mean face, we also use the
covariance of the faces to describe the average human
face. Using the technical computing program MatLab
we can easily compute the covariance matrix given by
equation (1). We first reshape the 99x2 face matrices
into 198x1 vectors, treating each value as a “variable,”
and each face vector as a “sample,” much as the height
and weight measurements are both variables sampled
from a person. Figure 3 shows an annotated version of
the matrix for which we’ll compute the covariance.

27

Figure 3

Equation (1) results in an eigenvector matrix with
the number of columns (eigenvectors) equal to the
number of variables in the data, so in the case of our
face vectors, 198 vectors. However, mathematically it
can be shown that most of the variation data can be
explained with only the first few eigenvectors, whose
weight fall off exponentially. Figure 4[3] shows a plot
of the relative weight of the first 30 eigenvectors for an
average data set, with an inset of a log plot for the
same data. It is easy to see that most of the data is
contained within the first 10 eigenvectors, so to save
calculation time in our program, we only compute and
use the first 20 eigenvectors from our PCA analysis of
the faces (although we allow the user to use specify the
number to optionally compute more).

Figure 4

2.2 Computing variances for a new face

After calculating the mean face and eigenvectors for
the covariances of the input training face set, we can
use these values to measure how a new face varies from
the average. The initial step is to label the new face
the same as the training set and to align the points.
Figure 5 shows a picture of talk show host Jay Leno,
with 99 landmarks labeled on his face (as blue x
marks).

Figure 3

After we have a new face (reshaped to a 198x1
vector), we compute the inner product of the new face
vector with the eigenvector matrix, essentially
projecting the face vector onto each one of the
eigenvectors. This produces a vector whose
components are representative of the new face’s values
with respect to those of the average components of the
training set. So, by subtracting the mean face vector
from the vector of new face values, we get the
differences between each feature on the new and average
faces. To compose an exaggerated caricature of the
input face, we decided to create a couple of different
results by multiplying all or part of this “variance”
vector by a scalar to see the different magnitudes of
exaggeration they create, and also to better understand
how these constant parameters work and affect the final
image results.

2.2 Morphing

28

The morphing algorithm we used to generate the
warped image from an exaggerated face vector works
on the principal of inverse mapping. The algorithm
goes through every pixel of the new, or destination
image, and interpolates the pixel in the source image
to use in the destination pixel. This assures that every
pixel in the destination gets painted.

The interpolation algorithm works by considering
matching lines, or contours, in the source and
destination images. For each pixel, its distance to
each contour is computed, and a weight assigned to
this distance, which is given by:

b

i dista

length
w 









+
=

ρ

(3)

where a, b, and _ are constants, dist is the shortest
distance from the pixel to the line, and length is the
length of the line. Currently, our program uses values
of a = 1, b = 1, _ = 0.5.

Finally, these values are used to compute the
location of the source pixel by mapping each contour
in the destination image to a contour in the source
image (which may be translated, rotated, and scaled
from that in the destination).

In the case of our face vectors, each set of points
within one feature (for example, one eye) creates a line
with its adjacent landmarks, as shown in Figure 2, and
each of these lines is weighted for each pixel in the
morphing program.

3. Results and analysis

Looking at the resulting images we received from
scaling the face variance vector, we subjectively
decided that scaling all of the vectors by a factor of 4
produces the most satisfactory result. By that we
mean, it provides a large enough magnitude of
exaggeration so that the resulting image resembles a
caricature, but at the same time retaining the original
face enough so that it is not too distorted and still
easily recognizable. Figure 6 is the original input
image. Figure 7 is the resulting caricature output with
a scalar factor of 4 applied to the variance vector.

Figure 6

Figure 7

The caricature image of Figure 7 displays some
positive results in terms of creating some of the
exaggerations that would be expected in a caricature of
Jay Leno. For example, his chin and cheeks appear to
be enlarged and extended from the original, as has his
forehead, while his nose appears to have been made
thinner and pointier.

There are some clear problems with this output,
however. While some of Jay Leno’s features have been
exaggerated, they are not stretched to the point of an
actual caricature, such as shown in Figure 8. With
greater values of the scalar multiplier, however, the
image begins to show signs of warping not associated
with caricature. This is most likely from features
which are very close to the average being exaggerated
as well, due to the magnitude of the scalar. One way
to address this issue in future work would be a relative
scaling of each component in the variance vector.

29

Instead of a constant scaling factor, a linear or even
exponential scaling factor could be used, to maximize
the exaggeration of varying features while minimizing
that of features close to the average.

Figure 8

Another issue of concern with the caricature image
are warping artifacts, the most visible of which is an
incongruous line from Leno’s right eyebrow to below
his ear. It is also clear that the top of his head has
been cut-off from the image, unfortunately not
allowing us to view any exaggerations to his hair.

These problems are most likely caused by the
morphing program, as an examination of our
covariance matrix and variance vectors did not reveal
any problems such as stray landmarks in our morphed
images (including others besides the Jay leno photo).
These issues could hopefully be addressed by adjusting
the parameters of the morphing program, as well as
some of its functioning. For instance, we specifically
wrote the program to produce an image the same size
as the original for better comparison. But this creates
cut-off as the image is stretched, and it would be a
simple matter for a future program to not be
constrained in this manner. Another issue with the
morphing program is its runtime, which is on the
order of O(n3) for an image of size nxn. This means a
lot of processing time for even small images, such as
the Leno picture which is 99x112 pixels. A more
efficient morphing program would allow more
thorough testing of program parameters to produce the
best image caricature.

Other improvements could be made to the
landmark set we defined for our faces, which does not
include features such as the ears and facial hair.
Including more facial features, and using more points
to create a more detailed face should provide better
results from the training set and more ways to stretch
an image from the average.

4. Conclusions

We determined that our method of producing a
computerized caricature is a solid beginning framework
for this project. By describing an average human face
by the mean of a training set and the covariance matrix
eigenvectors of that set, and using this average face to
compare and exaggerate new faces by scaling their
variance vectors, we produced rudimentary caricatures
of the new faces. There is room for improvement in
the way the exaggeration is calculated, and on the
graphical end for morphing the image, but these
enhancements can be built upon our method’s
foundation.

Over the course of this project, we ran into several
difficult choices for how to proceed, such as how to
landmark the faces, how to align them, and how to
exaggerate the variance. We also encountered several
difficulties in producing results, mainly with how to
accurately define and compute the variance vector, and
how to morph the image. This taught us a great deal
about Principal Component Analysis and what the
covariance matrix and its corresponding eigenvectors
and values can tell you about a data set. We also
learned a little bit of graphical programming in how to
warp an image based on a set of landmark points.

We found that time was a big factor in our research.
The individual marking of each face in the training set,
and for new faces to be caricatured, was very time
consuming and warranted a lot of patience. For future
work in this area, a method for accurately marking the
landmarks of faces automatically would greatly
increase the performance of our method, because a
larger training set will produce a better representation
of the average face.

The morphing program was another time
bottleneck, and an improved morphing algorithm
would strengthen our results by allowing us to try
more methods for computing variances to observe
which methods of exaggeration work the best. An
interesting problem we encountered, after we’d
determined how to calculate the variance vector, was
just how to modify that vector to produce a caricature,
which from our experience seems to be a deeper task
than one might originally suppose, something
connected to our own human abilities of sight and
interpretation of images and art, and this provides the

30

most interesting avenue for future research in this area:
how to better explain what we view as “characteristic,”
not just in human faces but in all things we observe.

5. References

[1] Lee, Tai Sing, Principal Component Analysis Lecture,
Carnegie Mellon University, Pittsburgh, PA, Spring 2004,
p. 9

[2] Beier, Thaddeus, Neely, S, Feature-Based Image
Metamorphosis,
http://www.hammerhead.com/thad/morph.html , Siggraph,
1992

[3] Lee, Tai Sing, Principal Component Analysis Lecture,
Carnegie Mellon University, Pittsburgh, PA, Spring 2004,
p. 19.

Authors:

Dylan Goings is in his third year of study for a
Bachelor of Science in Physics at Carnegie Mellon
University, minoring in Creative Writing with a focus
on Poetry. He hails from Ann Arbor, MI., a hometown
he holds dear to his heart. His favorite color is blue.
Right now, he is probably smiling.

Jean Sun was born in Shanghai, China and grew up in
Boston, MA. She is currently a junior majoring in
Computer Science and Business Administration.

31

Real-time Soccer Ball Detection

Daniel Kim
danielki@andrew.cmu.edu
15-385: Computer Vision

Professor Tai Sing Lee
Carnegie Mellon University
School of Computer Science

Kevin Caffrey
kcaffrey@cmu.edu

15-385: Computer Vision
Professor Tai Sing Lee

Carnegie Mellon University
School of Computer Science

Abstract

This paper details an attempt at real-time soccer
ball detection in color images using AdaBoost, a
powerful boosting algorithm which combines several
weak learners to give results with higher accuracy
than any of the individual classifiers. Many features
were investigated as potential classifiers for
AdaBoost, such as color histogram, power spectrum,
circle detector, and Gabor wavelets, but in the end, a
collection of 15 Haar-like filters was chosen. The final
results were 100% accuracy at detecting soccer balls,
with a 1.3% false positive rate, when run on the
training set. Efforts at real-time processing allowed
achievement of an average time of 0.6 seconds to
evaluate a 320x240 pixel color image, which is
equivalent to 1.7 frames per second.

1. Introduction

The development of a robust, generalized object
recognition algorithm is critical to the advancement of
robotics and computer vision-related applications.
Widely respected international organizations such as
RoboCup are striving towards having a fully
autonomous team of humanoid robots play soccer with
the best human players by the mid-21st century.1 In
order to meet these goals, we must continue to
improve and test the limits of computer vision
algorithms.

AdaBoost provides a powerful technique for image
classification. This algorithm requires several weak
classifiers as inputs, though. Some potential
classifiers include, but are not limited to, color
histogram, power spectrum, circle detection, Gabor
wavelets, and Haar filters.

1 http://www.robocup.org

Color histograms take all the pixels in an image
and place them into a defined number of bins, with
each presumably covering the same span of pixel
values. Color histograms are good detectors of images
that have a distinct color signature, for example, a
soccer ball. Other applications for color histograms
are in image tracking.

The power spectrum is a plot of an image’s power
divided amongst bins for varying frequencies. Power
spectrums are most commonly generated by using a
Fourier transform, and taking the magnitudes of the
complex coefficients and squaring them.

A circle detector would also be useful soccer ball
detection. One possible implementation of a circle
detector utilizes the Hough transform. This requires
some method of edge detection. The more popular
forms of edge detection are the Canny, Prewitt, Sobel,
and Roberts edge detectors.

Gabor wavelets are a family of wavelets of
particular orientation and scale. It is believed that
images in the primary visual cortex are represented in
terms of Gabor wavelets, which gives an indication as
to their wide ability and range in application.

Haar filters are rectangular filters loosely based on
the Haar wavelet bases. They are simple and quick to
compute, and provide rough information on edges and
borders within images.

2. Methods

2.1. Image collection

The majority of the images used in this
investigation were taken around the campus of
Carnegie Mellon University. A generic black-and-
white soccer ball was used, and pictures were taken
using a Fuijifilm Finepix 2800 digital camera, as well
as a webcam. Both outdoor and indoor images were
taken. Outdoor images were captured on a sunny day,

32

however, the lighting varied between individual
pictures. Indoor images were taken in Mudge
dormitory.

Figure 2.1.1: Sample soccer ball images taken from our
training set

Soccer ball images were taken against a variety of

backgrounds ranging from grass and flowers to
concrete and sky. This was done so that our training
set would be as robust as possible. Also, creating a
homemade training set ensured that all the images
would be of the same soccer ball, vastly improving our
detection ability. Using a Matlab function we wrote,
soccer ball images were cropped to be made square,
smoothed, then subsampled down to a predetermined
size of 50x50. Special care had to be taken to ensure
the images outputted were exactly 50x50 and not
51x51 or 49x49, regardless of the size of the original
image.

 (a) (b) (c)
Figure 2.1.2: Shows images downsampled a) without

border padding, b) without smoothing and c) with
smoothing.

Non-soccer ball images were taken of natural

scenery, and effort was made to match these to the
backgrounds of the soccer ball images. To quickly
and effectively increase our set of non-soccer ball
images, random 50x50 sub-windows were taken from
the large, high-resolution non-soccer ball images. All
in all, 71 soccer ball and 978 non-soccer ball images
were collected and used.

2.2. Classifier Learner - AdaBoost

 AdaBoost is a method of boosting developed by
Freund & Schapire in 1995. Boosting is a method of

combining weak classifiers together to form a strong
classifier. The concept was introduced by Kearns &
Valiant in 1989 when they proved learners with only
slightly better than random performance could be
combined together to form a strong learner with high
accuracy. AdaBoost has since been used in many
rapid object detection systems. In particular, Viola &
Jones used AdaBoost for face detection with promising
results. They succeeded in developing a real-time
system with approximately 95% accuracy and a
negligible false positive rate. [1],[3]
 A popular approach to using AdaBoost is to use a
cascade method. A coarse-to-fine search is done
through the image to reduce calculation time while
retaining performance levels. Initial stages achieve
very high accuracy while attaining a relatively low
false positive rate, but still rejecting most of the
windows from the search. Later stages utilize more
weak learners to reduce the false positive rate. Viola
& Jones used 38 stages and 6000 features to achieve
95% accuracy with 1 in 14084 false positives, at 15
frames per second. Their approach to choosing the
number of classifiers per stage and number of stages
involved setting accuracy requirements for each stage,
and an overall accuracy goal to decide when to stop
adding stages. [1]
 AdaBoost is used to choose a small number of
classifiers from a large set of classifiers. Each
classifier is run on a large training set of training data
to determine the errors of each classifier. AdaBoost
chooses a classifier and confidence related to the
weighted error at each step. After each classifier is
chosen, the errors are re-weighted such that the
examples that were classified correctly receive less
weight for the next choice. This encourages weak
learners that compliment each other. The confidence
generated is related to how much each learner reduced
the error. The confidences are used to build the strong
classifier by multiplying each weak classifiers answer
by the confidence. If the sum of these weighted
classifications is greater than half the sum of the
confidences then the final output is true. The
algorithm is listed in Table 1.
 Although AdaBoost offers promising results,
there are several problems involved in the practical
implementation. The first, and main problem for us,
is that it requires a large training set to achieve good
results. Our set of close to 1000 negative and 100
positive images yielded decent but weak results. The
second problem is that it is highly dependant on the
weak classifiers used. AdaBoost attempts to make
each hypothesis independent by assuming that

33

individual hypotheses will have little correlation
between the examples classified incorrectly. If there is
a strong correlation between the results of classifiers
then one classifier will end up having a much larger
confidence than the rest. The problem with this is that
the output of the final strong classifier is relying only
on one weak classifier, thus boosting is ineffective.
This same problem can arise if some classifiers are too
strong or complex.

Table 2.2.1: The AdaBoost algorithm for learning
classification. Each round selects 1 feature from the set of
7000 features in our implementation. [1]

 Another problem associated with the approach
Viola & Jones took is the large time required to train
using AdaBoost. Viola & Jones used 180,000
features, with 20,000 sample images. For 6,000 stages
of AdaBoost, this required on the order of 1013 feature
evaluations, which is extremely prohibitive for
training. McCane & Novins estimates that this would
require about a year to train. They present alternatives
to feature evaluation using functions to minimize to
find the best features. Their results are moderately
successful, although they didn’t achieve as high
success as Viola & Jones, which makes their work
questionable. McCane & Novins also propose a better
way to choose the number of classifiers per stage is
with a maximum computation time allowed per stage,
instead of performance levels. [1],[2]

2.3. Classifier selection – Color Histogram

The first feature examined was the color histogram
of the image. The belief was that, since soccer balls
(and our test ball in particular) are predominately
black and white, the color histogram would reflect this
by having two sharp peaks at the ends. Non-soccer
ball images were predicted to have a relatively
uniform distribution of pixels.

The classifier for the color histogram would involve
calculating the sum squared error of the color
histogram from the average color histogram of a
soccer ball image, and thresholding at some value.

Figure 2.3.1: Average color histogram of a soccer ball

Figure 2.3.2: Average color histogram of non-soccer ball
images.

2.4. Classifier selection – Power Spectrum

The next feature examined was the power spectrum
of the image. From prior experience, power spectrum
was known to be a decent texture discriminator,

• Given example images (x1,y1), …, (xn,yn)
where yi = 0,1 for negative and positive
examples respectively.

• Initialize weights w1,i = 1/2m, 1/2l for yi =
0,1 respectively, where m and l are the
number of negatives and positives
respectively.

• For t = 1,…,T:
o Normalize the weights to sum to 1
o For each feature j, train a classifier hj

which is restricted to a single feature.
The error is calculated with respect to
wt, ej = Sum over i (wi |hj (xi) – yi|)

o Choose the classifier with the lower
error et

o Reduce the weights of examples
classified correctly by a factor of Bt,
where Bt = et / (1 – et)

• The final classifier outputs 1 if the sum of
log(1/Bt) ht(x) is at least one half of the sum
of log(1/Bt). Here, log(1/Bt) is the
confidence for each classifier t.

34

particularly for our purposes in this project, due to the
nature of a soccer ball. The texture of a soccer ball
will be of a given frequency, and varies in a similar
manner in all directions due to the symmetry a soccer
ball has. Also, regardless of what orientation the ball
is in, the power spectrum should come out to be the
same.

The classifier for the power spectrum would behave
in a similar manner as the color histogram.

Figure 2.4.1: Average power spectrum of soccer ball

Figure 2.4.2: Average power spectrum of non-soccer ball
images

2.5. Classifier selection – Circle Detector

Another feature detector examined was a circle
detector. The major shortcomings of a circle detector
would be with images where the soccer ball was at
least partially occluded, destroying its circular nature,
and with images of balls other than soccer balls. Of
course, a circle detector would find all kinds of circles
other than soccer balls, making it prone to having a
high false positive rate, but its effectiveness at finding
soccer balls if they exist make it worthwhile.

The circle detector would be implemented using
edge detection followed by a Hough transform. Edge

detection was done using a Sobel operator, thresholded
at .3.

The classifier for the color histogram would involve
looking at the result of the Hough transform and
determining whether there was a circle or not.

2.6. Classifier selection – Gabor Wavelets

Gabor wavelets were also tried as features, but due
to the lack of promising early results, were quickly
abandoned. Two Gabor wavelets were used, and the
average power of the wavelets and the image was
calculated.

Figure 2.6: The two Gabor filters used: 40 degrees and 70
degrees.

 2.7. Classifier Selection – Haar-like Filters

 The problem with the previous classifiers tried is
two-fold: the lack of gain from boosting, and the
computation time involved. With only a few feature
detectors, there are images that none of the classifiers
got correct. In addition, they seemed to be too strong
to benefit from boosting. The strongest detector, the
circle classifier, had a vote of over half of the total
confidence, giving it the only vote that matters. If the
circle detector was taken out, the same held true for
the next strongest detector. We needed a larger
number of weaker classifiers for AdaBoost to be
successful. In order to achieve our goal of near real
time results, each evaluation of the classifier must be
very fast.
 Based on these problems and our requirements,
we decided to try the features used by Viola & Jones in
their face detection algorithm. These features are
Haar-like filters that are applied to a specific region of
the image to get a numerical response. These filters
are composed of 2, 3, or 4 rectangles. In figure 2.7.1,
the white rectangles refer to the positive sum of pixels
within that region, which then subtracted by the sum
of the pixels in the black regions. Although rough,
these features provide an adequate description of
boundaries.

35

Figure 2.7.1: Haar-like filters of 2, 3, and 4 rectanagles [1]

2.7.1 Integral Image. The main advantage of the
Haar wavelet features is that an image representation
known as the integral image can be used for efficient
computation of rectangle features. The integral image
at location x,y contains the sum of the pixels above
and to the left of x,y, inclusive. This representation is
particularly efficient as it allows the sum within a
rectangle to be computed with only 4 array references.
The difference between any two rectangles can be
computed in only 8 references. Because the Haar
filters involve adjacent rectangles, less array
references are actually required.

Figure 2.7.2: The value of the integral image at point 1 is
the sum of the pixels in region A. The value at location 2 is
A+B, and the value at location 3 is A+C. The value at
location 4 is A+B+C+D. Thus, the sum of the pixels at D
can be computed as 4-3-2+1. [1]

 There were 4 variations of the Haar filter, as well
as many possible sizes and positions. The parameters
for a Haar feature were which of the 4 filters in figure
2.7.1 was used, the position of the upper-left of the
filter within the window, and the width and height of
the filter. Given these parameters and a 50x50

window, there are on the order of 106 possible Haar
filters. We reduced the number down to 7000 by sub
sampling from the entire Haar filter-space.

Figure 2.7.3: Illustration of the possible parameters for the
Haar filters [1]

 For a given sample image, we were able to pre-
compute the integral image, which allowed for just a
small number of array accesses per feature evaluation
after the initial cost to compute the integral image.
The training time of AdaBoost was further decreased
by storing the error vector of the 7,000 features,
allowing each iteration of AdaBoost to take time linear
to the number of features, rather than varying with
both the number of features and number of images.
 The Haar filters generated ranged in accuracy.
The best had an 89% accuracy rate with 6.1% false
positive. The other filters chosen by AdaBoost ranged
from 60-90% accuracy. These filters were of similar
strength to the previous feature detectors we used,
although they appeared to show greater independence
from the large number available and specificness to
just one rectangle of the window. Thus, AdaBoost
achieved significant confidence values for all the
classifiers chosen. Haar wavelets succeeded in
meeting our requirements in weak classifiers: they
benefit greatly from boosting, and are very fast to
evaluate.

3. Results

3.1. AdaBoost Classifier

 We trained our AdaBoost classifier with T=15
weak classifiers built from Haar-like filters. The final
classifier had significant confidence for each weak
feature detector. This classifier was applied to 50x50
windows in a given sample image to attempt to find
regions with positive classifications. In the interest of
speed, not every possible window was looked at.
There was only an overlap of 40 rows/columns for
neighboring windows. Due to the way we trained

36

AdaBoost, we recognized that each soccer ball should
return multiple positive windows. We thus group
overlapping windows into one region and take the
centroid of a region as the location of the ball detected.
To help eliminate false positives, we ruled out regions
of positive response that did not have enough overlap,
or where the region of sufficient overlap was not large
enough.

3.2. Accuracy and Speed

We achieved 100% accuracy with 1.3% false positive
on our training data. Test images and movies had
similar results with proper backgrounds and soccer-
ball size. It took on average 0.6 seconds to process a
320x240 image in Matlab. This met our initial goal of
1 second to process an image, as we recognized
Matlab would not achieve speed results comparable to
a program optimized in a lower level language such as
C++. AdaBoost took approximately 1 hour to train on
a sample set of a little over 1,000 images and 7,000
features. The majority of this time was the time
required to evaluate each feature on each image. The
training process was optimized by loading each image
only once and computing the integral image only
once. All 7,000 features were run once the integral
image for a given sample image was computed.

Figure 3.2.1: Detection of a soccer ball in a testing image
taken from a webcam.

Figure 3.2.2: Successful detection of a soccer ball in one of
our original training images before cropping.

Figure 3.2.3: Successful detection in a test image taken with
a digital camera.

4. Limitations

4.1. High False Positive Rate

 Although our accuracy was sufficiently high, our
algorithm suffered from a high false positive rate. For
practical uses 1.3% is much too high, as in an average
320x240 image, there will be 7 false detection
windows returned. Our measure of overlapping and
discarding regions with not enough overlap worked to
remove most of these false windows; however this
approach caused accuracy to decline in some
situations. In some images, ball detections were lost
to regions with a large number of false positive
windows due to the threshold we implemented. In the
videos we tested, this only occurred in less than 10%
of the frames.
 To reduce the false positive rate, we could have
implemented a cascade approach such as in Viola &
Jones. We were limited in the scope of our project

37

with this respect from time constraints. However,
with just 15 features chosen from 7,000 we were able
to achieve the promising results we did. If we were to
implement a multi-stage cascade choosing from a
larger set of features we are confident we would get
even stronger results.

4.2. Training Set

 Another problem with our soccer ball detector is
the training set we used to train AdaBoost. We had
only 71 images of soccer balls, and 978 subwindows of
non-soccer ball images. The training set size was
again limited by time constraints on completion. As
is, it took a little over 1 hour to train. On a more
desirable set of close to 20,000 images in a training
set, AdaBoost would have taken close to a day to train.
If we had implemented cascade along with a sufficient
training set, training time could have been on the
order of weeks.
 The main problem with the small training set that
we observed was the limited ability to generalize. Our
algorithm worked well in environments that had been
presented in the sample images, but with unfamiliar
backgrounds there were odd and slightly unpredictable
results.
 Further work on this topic could entail finding
more efficient ways of training AdaBoost to allow a
sufficiently large training set.

5. Conclusions

 Although our exploration into a generic approach
to object detection, trained in our case to detect soccer
balls, was met with limited success, we were able to
learn a lot about the techniques involved. We learned
the importance of fast feature detectors in a boosted
cascade scheme, where many features are evaluated
for every window in question. We also learned about
some of the limitations of AdaBoost. In particular, we
found out that strong classifiers could possibly not
benefit from boosting, and that dependant classifiers
would most certainly not benefit from boosting.
 Our experiments show that it is possible to
generalize the techniques used in face detection for
generalized object detection. Boosted cascade could
be used for robotics, in particular robot soccer to detect
soccer balls in real-time.

6. References

[1] Paul Viola and Michael Jones. Rapid object
detection using a boosted cascade of simple features.
In Computer Vision and Pattern Recognition, volume
I, pages 511-518. IEEE Computer Society, 2001.

[2] Yoav Freund and Rober E. Schapire. Experiments
with a new boosting algorithm. In International
Conference on Machine Learning, pages 148-156,
1996.

[3] Brendan McCane and Kevin Novins. On training
cascade face detectors. In Image and Computing NZ,
pages 239-244, 2003.

7. About the Authors

Kevin Caffrey is from Oakton, Virginia and is
pursuing a Bachelor’s degree in Computer Science as
a sophomore at Carnegie Mellon University. He is a
member of the varsity track team and a brother of the
Kappa Delta Rho fraternity. Kevin is working at the
Naval Research Laboratory over the summer.

Daniel Kim is from Silver Spring, Maryland and is
pursuing a Bachelor’s degree in Computer Science as
a sophomore at Carnegie Mellon University. Daniel
will be traveling to Korea for two weeks this summer
after which he plans on doing research at the National
Institute of Standards and Technology.

38

A Comparison of Background Modeling Techniques

Mike Schultz
Department of Electrical & Computer Engineering, Carnegie Mellon University

schultz2@andrew.cmu.edu

Abstract

This paper describes a comparison of seven
background modeling techniques, including four pixel-
level only methods, the Wallflower algorithm[1], the
ComMode algorithm[2], and a novel technique,
RegMode, based on the ComMode algorithm. These
methods are tested on a database of videos with a
stationary camera. No training data is provided. The
performance of the algorithms is judged based on
visual criteria alone.

1. Introduction

Background modeling is an attempt to extract out
the stationary components from a portion of video.
Often, these stationary components can be reduced to a
single image. The background information can then be
used for a wide variety of applications, including
compression, segmentation, and tracking.

Many approaches to this problem have been
suggested. The simplest are pixel level models. Purely
statistical methods, such as the mean and mode, treat
all pixels the same. Other methods attempt to do a
crude segmentation to exclude some pixels which are
obviously not background. More advanced approaches
attempt to combine local pixel information into larger
regions and use higher level logic to improve the
results.

There are a number of problems and pitfalls
inherent to background modeling. These are described
in more detail in [1], but I will briefly describe them
here. Objects may change states during the course of
the video (i.e. background to foreground, foreground to
background, or background to foreground to
background). These types of problems are called
"waking person", "sleeping person", and moved object
problems, respectively. Lighting changes can also
affect the background. These changes can be gradual,
e.g. time of day, or sudden, e.g. light switch.
Background objects may not be completely stationary,
as in the case of waving trees. Foreground objects may

blend in with the background, as in the case of
camouflage. Pixels on the interior of a foreground
region may not change as rapidly as the borders, and
thus may be identified as background (“foreground
aperture”). Finally, shadows case by foreground object
share properties with both foreground and background
objects.

2. Pixel-level only methods

The pixel level only methods tested for comparison
purposes were mean, mode, adjacent frame difference,
and linear prediction. The mean background was
created by replacing each pixel by the mean of its time
sequence. The mode background was created by
replacing each pixel by the most common value in its
time sequence, i.e. its statistical mode. It is important
to note that in the implementation that was tested the
RGB channels were treated separately for mode
calculation. Thus the RGB value that the background
pixel takes may not be a value that occurs in its time
series. This method may is called the Bayesian
Decision since the mode is essentially the value with
the highest probability when the normalized histogram
is taken as an estimate of the pmf.

The adjacent frame difference method looked at the
difference between two consecutive frames. Any pixels
that exhibited change above a certain threshold were
considered foreground. In this way a crude
segmentation of the time series for each pixel was
accomplished. This effectively marked only transition
regions as foreground and left more temporally
consistent regions as background. The final
background estimate for each was determined by taking
the mean of the values in the time sequence marked as
background.

There are many ways that linear prediction may be
used to estimate the background. The exact equations
and methods may be found in a textbook. In this
method, Levinson-Durbin Recursion was used to
estimate linear predictor coefficients for a one-step
ahead Wiener filter predictor based on the entire sample
of video. The results shown later used 30 predictor
coefficients. It is important to note that this method

39

varies slightly from the way that linear prediction is
used in the Wallflower algorithm, as will be discussed
in the next section.

3. The Wallflower Algorithm

The Wallflower algorithm [1] is a multi-level
algorithm consisting of three types of processing. It
was designed for use in security camera and time-lapse
video situations. The motivation in Wallflower’s
development was an algorithm that, given some
training data, could maintain the estimate of the
background over an extended period of time and could
handle most of the problems identified in the
introduction.

3.1 Pixel-level

At the pixel-level, Wallflower attempts to produce
preliminary estimates of the background by utilizing
linear prediction. For each pixel, it keeps a history of
the last 50 actual values and predicted values. For each
new sample, it computes two sets of 30 prediction
coefficients for a Wiener filter, one using the actual
values and one using the predicted values. If the new
actual value is less than a threshold, the pixel is
considered to be background.

The model based on the predicted values is used to
account for a foreground object corrupting the history
of actual values. The coefficients are recomputed at
each frame to allow for adaptation, such a time of day.
If the new coefficients have an expected squared error
less than 1.1 times the previous error then they are
kept. Otherwise, the old coefficients are retained.

3.2 Region-level

The region level processing in Wallflower attempts
to avoid the foreground aperture problem. Pixels on
the interior of a homogeneous moving object may be
classified as background by the pixel level processing.
To solve this, Wallflower uses the adjacent frame
difference method. If this method tags a pixel as
foreground in two consecutive frames then it is clearly
a foreground pixel. Combining this information with
the foreground data from the pixel-level, regions are
identified as definitely foreground. Contiguous
foreground pixels are then grouped together. The
histogram of each group is then used to expand the
region. If the histogram value of a pixel adjacent to a
group is above a certain threshold that pixel is added
to the group. In this way, the foreground region is
expanded to include areas that were previously marked
background.

Note: In the implementation used for comparison
in this paper, the histogram used for each group was

not full histogram of with a bin for every value, but a
histogram with 64 bins for each channel.

3.3 Frame-level

The frame level processing for Wallflower is
designed to handle the light switch problem. To do
this Wallflower maintains multiple pixel-level and
region-level models at once. Each model is designed
for a different set of circumstances (e.g. lights on,
lights off), but only one model is active at any time. If
the number of foreground pixels exceeds 70% of the
total number of pixels, Wallflower considers switching
models.

This level of processing requires training data for
each set of circumstances. Since the limitations of this
comparison were such that there was no training data,
this level of processing was eliminated in the
implementation.

4. The ComMode Algorithm

The ComMode, “competitive mode estimation”,
algorithm[2] was designed to do background modeling
and object segmentation on any portion of video that
had either a stable camera or had been aligned. The
basic concept is that pixels were decomposed into a
number of operating modes based on self-consistent
regions. The most consistent mode was selected as an
initial background estimate. Surrounding pixels then
“voted” for or against each mode based on the
similarity between it and their own background
estimate. The background is then chosen to be the
mean value of the estimate background mode for each
pixel.

4.1 Mode Determination

Each pixel is divided into its modes based on the
variance of its time sequence. The standard deviation
over a sliding window of pixels is computed. When
this deviation is above a threshold the pixels are no
longer considered consistent. Contiguous regions of
consistent pixels are then grouped into modes, with
their intervals being bordered by the inconsistent

Figure 1: Finding the right foreground in regional level
processing

40

pixels. These modes may then be combined with other
modes if their mean RGB value close enough. In this
implementation, a window of 5 pixels was used and
the threshold for consistent regions was a standard
deviation of 5.

The initial estimate for the background mode of
each pixel is then determined and given a confidence.
For pixels with only one mode are given a confidence
of one. For other pixels, the mode with the least mean
standard deviation of its time series, that is the most
consistent mode, is chosen as the initial estimate and
given confidence of 1/N, where N is the number of
modes at that pixel.

4.2 Mode Competition & Voting

Each mode then competes with the other modes
through a voting system using surrounding pixels. The
set of voting pixels is determined by a radius around
the current pixel, or, as in the case of this
implementation, by a square of certain size around the
current pixel. I used a square of 7 pixels, i.e. +/- 3

pixels in each direction. Each pixel within the voting
set casts a vote for each mode in the current pixel of
the value of its voting confidence times the similarity
of that mode with its own estimate. Each pixel in the
voting set then casts votes against each mode of the
value of its voting confidence times the similarity of
the mode with its own mode that is most similar.

The voting confidence is determined by its own
confidence in its estimate times the distance from the
current pixel. The similarity between two modes is
based on color difference measure and a temporal
distance measure. The color difference is 1 minus the
sum of the absolute difference in each channel (each
value is normalized from 0 to 1, instead of 0 to 255).
The temporal distance measure is the length of the
intersection of their time intervals divided by the
minimum length of the individual intervals.

After each round of voting, the mode with the
highest voting value is chose as the new estimate. The
confidence is set to the voting value divided by the
sum of the voting values for all modes. If the
confidence is above a threshold, it is set to 1.

The ComMode paper[2] suggests that the voting
process converges after no more than 5-10 iterations,
but I found that it converges after about 3 iterations.

The background image is taken to be the mean
value of the mode estimate at the end of the voting
process.

5. The RegMode Algorithm

The RegMode, “regional mode estimation”,
algorithm is essentially an adaptation of the ComMode
algorithm, although it takes an approach similar to
Wallflower. It attempts to do regional processing on
the modes of each pixel in order to utilize larger scale
information.
5.1 Motivation

The motivation behind RegMode is to use the best
aspects and ideas of each of the previously described
algorithms and eliminate their weaknesses. ComMode
seems to efficiently represent the ways the pixels
behave with its mode methodology. However, the
voting process is very computationally expensive and
does not seem to produce results good enough to merit
the computation time. Wallflower’s pixel level
processing is also very computationally intensive and
does not provide any information to higher level
processing other than a crude foreground/background
distinction.

Figure 2: A typical time sequence divided into four modes
Figure3: A standard deviation sequence and the resulting mode
division

41

RegMode was developed with the real-world video
in mind. Foreground objects in real video behave
according to physics. In video, they tend to appear in
adjacent pixels and at adjacent times. If these objects
are the basis for the modes in a single pixel, then
adjacent pixels should have modes that behave
similarly. Thus, it would be useful to group these
modes together into a larger regional mode to give a
better description of the foreground object. Ideally, the
background would be grouped into a single mode
which would be the most prevalent regional mode.

5.2 Pixel Mode Determination

RegMode begins by determining the modes in
exactly the same manner as ComMode. Pixel regions
with low variance are said to be consistent and grouped
into modes. These modes are then clustered with other
modes that have a similar RGB value. The mean RGB
value for the new composite modes is recomputed to
be used in the next step of processing. In order to save
memory, especially for long video files, the modes are
represented merely by successive start and end points
of the interval.

5.3 Regional Mode Determination

The pixel-level modes are then grouped into
regional modes. First, each pixel-level mode is
considered to be its own regional mode. Next, each
mode is compared to every mode of pixels adjacent to
it. Modes with the same pixel are already assumed to
not be similar due to clustering in the previous stage.
Mode comparison is based on a similarity measure
which is based on both color and time interval. The
color component of the similarity measure is the sum
of the absolute difference in each channel (just as in
ComMode, except that these channel values are not
normalized to 0 to1). The time interval component
measures the percentage of overlap between the two
intervals. The overlap is one minus the length of the
intersection of the two intervals divided by the length
of the longer interval. The final similarity measure is
the product of the two components. If the similarity
measure between the two modes is less than a
threshold, the two modes are considered equivalent.

5.4 Background Synthesis

Once all equivalent modes are determined, each
pixel-level mode has a regional mode that is associated
with. The regional modes are then sorted based on
number of times they occur. At each pixel, the pixel-

level mode that has highest rank regional mode is
chosen to be the background mode for that pixel. The
background image is then composed of the mean RGB
value for this mode at each pixel.

6. Results

In many of the clips tested, the results for each
algorithm came out very similar. The statistical mode
was consistently the best estimate of the four pixel
level only models. The mean, frame difference and

linear prediction methods produced very similar blurry
results.. In uncertain regions Wallflower produced
blurred results, whereas ComMode and RegMode
produced jumbled and distorted images, very similar
to the statistical mode. ComMode consistently
produced glaring artifacts as can be seen in Figures 4-
5. RegMode produced artifacts as well, although its
artifacts were generally limited to areas that other
algorithms got wrong (Fig 5). All algorithms had
difficulty with regions where the background was
visible for only a short period, but the statistical mode
and RegMode performed better than the other methods

6.1 Computation Time

Figure 4: From left to right,
top to bottom: Mean, Mode,
Frame Difference, LP,
ComMode, Wallflower,
RegMode

42

The four pixel-level only methods had relatively
insignificant processing time. For larger images and
longer videos, linear prediction took a few seconds.
The other three methods took less than a second.

The higher level methods had considerably longer
processing time. RegMode was always noticeably
faster than both ComMode and Wallflower. For small
videos of short duration, ComMode finished quicker
than Wallflower, although its processing time
increased rapidly as the clip size becomes larger.
Figure 4 and 5 illustrate the computation time as a
function of the total number of pixels (i.e. pixels per
frame times the number of frames). Although this is
not the ideal axis for each method, I feel it gives a
general idea of the computational load.

I would estimate that Wallflower’s processing time
is roughly linear with respect to total number of pixels
(minus the 50 frames necessary for bootstrapping).
ComMode and RegMode seem to be some nonlinear
function of the total number of pixels. ComMode’s
processing time is almost entirely dominated by the
voting process which is a function of number of pixels
and other voting parameters. However, in both
ComMode and RegMode, the number of modes found
in the image have significant impact.

7. Conclusions

From my results, I have shown that the fastest and
most efficient estimate for this type of videos is the

statistical mode. The other three pixel-level only
methods gave results pretty similar to what I expected.
– decent but not great. The three more complicated
methods have given me mixed results

The ComMode algorithm produces too many
artifacts and takes far too much computation to be an
effective method. Although the algorithm functions
well on small videos, any videos of significant size
cause the processing time to increase seemingly
exponentially. The results that I got for ComMode are
much less spectacular than those mentioned in the
ComMode paper, which leads me to believe that I may
have made an error in implementation.

The Wallflower method works satisfactorily, but its
results are not that much better than simpler methods
such as pure linear prediction or frame difference. It
seems to perform poorly on high frame rates and
probably would work better in its intended application
of time lapse security cameras. Wallflower use of linear
prediction allows it to adapt and handle oscillating
backgrounds, but the algorithm does not take full
advantage of the predictions, in that they are only used
for a background/foreground segmentation. The
processing time is linear with the number of frames
and number of pixels, making it a feasible method for
most video sizes.

The RegMode method has clearly shown its merits
in both its fast processing time and good estimates. It
succeeds in some areas where other methods fail.
Overall, I think it is a notable method, but my
algorithm clearly does not model the background the
way I had hope it would. I think the similarity
measure needs to be refined and tested a little more.

Pixel/frame*
number of

frames

Wallflower ComMode RegMode

 432000 283.3 146 31.54

1094400 160.1 899 160.1

1361920 1713.4 7542 292.0

1644160 2103.3 12246 474.4

Figure 5: From left to right,
top to bottom: Mean, Mode,
Frame Difference, LP,
ComMode, Wallflower,
RegMode

Figure 6 & 7

43

Due to time constraints I only had time to test a
couple of measures.

8. References

[1] Toyama, K. Krumm J., Brumitt, B., Meyers, B.,
“Wallflower: Principles and Practice of Background
Maintenance”, ICCV99 (255-261).

[2] Lipton, A. J. and N. Haering, “ComMode: An
Algorithm for Video Background Modeling and Object
Segmentation.” ICARCV02 (1603-1608).

The Author:
 Mike Schultz is a master student in EECS at
Carnegie Mellon. He is taking this course for graduate
15-685 credit, which requires him to tackle with more
problem sets and a more substantial term project.

44

Object Tracking by On-Line Learning of Motion Models

Chytra Pawashe
Dept. of Mechanical Engineering

Carnegie Mellon University, Pittsburgh PA 15289-4377, USA
chytra@cmu.edu

Abstract

We address the problem of tracking multiple
identical objects accurately in situations where objects
follow motion models. A deterministic and
probabilistic model of motion based on a Gaussian
distribution was implemented for the moving objects
in this study. Furthermore, objects were subjected to
collisions among world edges and other objects. By
tracking these objects, we hope to be able to determine
the underlying models of motion and use this
information to improve object motion prediction on-
line; this theoretically would allow object tracking to
become more accurate and become resilient to
collisions. We found that for both the deterministic
and probabilistic motion models, prediction accuracy
is very close to the actual motion. However the
deterministic model shows some resilience to
collisions, while the probabilistic model fails under
collisions.

1. Introduction

The human visual system is robust when tracking
multiple objects. It can analyze motion models, detect
collisions, and interpolate data while tracking. For
example, if an observer is tracking one car on a busy
road, and the observer is temporarily blinded from the
car (perhaps by a building), the observer has a good
idea of when and where the car will reappear.

The human visual system is limited primarily by
attentional resources. On average, the visual system
can accurately track four to five objects, depending on
the context [1]. Furthermore, the visual system does
not derive motion from monitoring objects on the
fovea; eye movements do not contribute to motion
detection. Instead, it is thought that mechanisms of
attention and attentional shifts contribute to object
tracking, as well as specific features in the object
motions [4].

Computers, on the other hand, do not have limits
in resources like humans. However a sophisticated
tracking algorithm, which humans possess, is a
missing idea.

In many cases, the motions of objects follow
patterns. These patterns can follow a deterministic
model, which implies that there is only one possible
next position of a given object – that its motion is
determined. The motion pattern can also be
probabilistic, which means that the next position of an
object is unknown, but has a certain probability of
being at certain points. This motion can appear as
being random, but indeed follows a distinct pattern.

The goal of this study is to develop an algorithm
that can find the underlying motion patterns of a given
set of identical objects that follow varying motion
models. Once the motion model is known, the
objective is to improve object tracking by creating a
prediction model based on the derived underlying
motion model. In this study, we worked with a
deterministic and a probabilistic motion model.

2. Methods

MATLAB was used to create, using simple
computer graphics, movies of objects following certain
motion models. MATLAB was also used to read the
generated movie and track objects in the movie using
the algorithms described in this paper. Analysis data
and graphs were also generated to compare motion
models and tracking algorithms.

2.1. Creating deterministic motion

In the deterministic motion model, the speed of an
object with respect to time is characterized by a 2D 24-
element Gaussian with a σ ranging from 1 to 2 (Fig
1); the Gaussian is also normalized to produce
adequate movement in the motion field, with velocity
being in units of pixels per frame. Typically, a

45

Gaussian with a higher σ appears smoother and
corresponds with smoother, slower object motion.

The Gaussian repeats itself when it reaches its end,
or after the 24th element in the Gaussian distribution.
This shows movement that is oscillatory. Fig. 2
portrays a typical speed-time graph of an object under
this motion model.

Figure 1. Typical Gaussian Distribution

Figure 2. V vs. T for Deterministic Motion Model

Furthermore, objects are initially given a pre-
defined starting position, a random propagation angle,
and a random starting speed based on the Gaussian
model (i.e. a possible random start speed corresponds
to starting at element 10 of 24 in the Gaussian
distribution). The next position of the object (P’) is
the current position (P) plus a displacement, which is
determined by the speed (S) and propagation angle (θ)
with simple trigonometric functions:

€

′ P (x) = P(x) + S ⋅ sin(θ)
′ P (y) = P(y) + S ⋅ cos(θ)

Collisions between balls and edges are processed
using simple physics, where the angle of incidence to
an obstacle equals the angle of refraction from the
obstacle (Fig. 3).

Figure 3. C ollision processing, angle of
incidence (ß) equals angle of refraction (ø)

100 frames of motion were produced in a 300x300
pixel movie, for 1-10 5x5 pixel objects with varying σ
values. Fig. 4 displays a typical frame of the described
motion field.

Figure 4. A Frame of objects

2.2. Creating probabilistic motion

In probabilistic motion, the speed and angle of
propagation of an object is determined probabilistically
based on a Gaussian. A 2D 24-element Gaussian with
σ ranging from 1 to 3 was used (see Fig. 1). The next
speed or angle is determined as described in the
following pseudo-code:

1 ΣGaussian = 1
2 X = RandomInteger(1 to 24)
3 T = RandomNumber(0 to 1)
4 P = Gaussian(X)
5 if P > T use P, else goto 2

Thus an object’s speed and angle, when viewed as a
histogram, will resemble the Gaussian it is associated
with. Furthermore, the value found from the Gaussian
is normalized to achieve adequate motion in speed (in
pixels/frame), and between 0 and 2π for angle.

The actual movement of an object in probabilistic
motion looks as if it were random. However the object
tends to move in one direction with small random
movements. Fig. 5 displays the velocity probabilities;
longer arrows are more probable, and the object tends
to the top-right. In the motion in this study, the
objects tend to move to the right side.

46

Figure 5. Portrayal of probable velocities
for an object; this object will tend to move
in the top-right direction

Finally, objects are given a pre-defined coordinate
starting position. Edge and collision detection are
employed using the physics described in Sec. 2.1, and
100 frames of motion in a 300x300 pixel world for 1-
10 5x5 pixel objects were created.

2.3. Primitive Tracking

Initially, underlying motion models are unknown
while tracking objects. A simple method to track
objects is needed while the underlying model is being
deciphered. One method to track without knowing the
underlying model is to assign objects using distances.
For an object, this simply means that the object in the
next frame that has the closest distance to the object in
the current frame is the object being tracked. In this
method, distance is defined (between objects A and B)
as:

€

D(A,B) = (Ax − Bx)2 + (Ay − By)2

Another way to primitively track is to use the
object’s last velocity to create a prediction model.
Essentially the predicted position of the object in the
next frame will be the object’s last velocity added to
its current position. Then, the closest object to the
predicted position in the next frame will be assigned as
the object being tracked. However, this will only work
with the deterministic model, as the probabilistic
model produces unpredictable velocities (the last
velocity is not relevant to the next).

2.4. Finding Underlying Models

Initially, the ball is being tracked using the
methods of primitive tracking (Sec. 2.3). While it is
being tracked, a speed-time relation is being
constructed.

For deterministic motion, the speed-time relation is
oscillatory (Fig. 2). Because the speed-time graph
directly resembles a Gaussian, we can directly compare
it to a Gaussian at the relevant sections to get the σ
value. The first point where the Gaussian is known

occurs at the first peak, as the varying Gaussians have
different peak sizes. These peaks are directly compared
to the peaks of Gaussians of different σ until a match
is found. Once found, the underlying propagation
model is determined.

For the probabilistic model, the velocity appears
random, portrayed in Fig. 6. However, the average
speed depends on the σ of the Gaussian; the average
speed is greater for smaller σ values. With this in
mind, the average speed of the object is constantly
calculated and compared to a table that relates
Gaussians to average speeds (which was pre-calculated,
but can be done on the fly). In this fashion, the
underlying Gaussian model is determined.

Figure 6. Speed-time graph
of probabilistic movement

2.5. Predicting deterministic motion

For deterministic motion, once the Gaussian model
is known for an object, velocities and positions are
predicted in the same way for creating objects that
follow deterministic motion (Sec. 2.1). Simply, the
next speed is determined by increasing the index of the
Gaussian distribution, and the predicted change in
distance in the x and y-axes is determined by using the
angle of propagation (calculated with the previous
position of the object) and trigonometric functions.
Furthermore, collision and edge detection is employed
for the prediction model to increase the robustness in
the prediction model (Sec. 2.1). Finally, the object in
the next frame that is closest to the predicted object
will be assigned as the object being tracked.

To correct prediction in the case that the object is
using an incorrect index on its Gaussian, the net
displacement and velocity associated with the
displacement is calculated after the assignment to the
next frame is made. Depending on where the index of
the Gaussian is and whether this just calculated
velocity does not correspond with the prediction, the
index on the Gaussian is adjusted.

47

2.6. Predicting probabilistic motion

In probabilistic motion, once the Gaussian model is
known, the next position of an object cannot be
determined with high certainty. However since there is
a probability model, some possible future positions are
more likely than others for an object. To take
advantage of this notion, particle filtering is used.

In the idea of particle filtering, small particle
objects are used to track objects. Particles that are
closer to an object will carry more weight, while
particles that are far from an object carry low or no
weight. In the next update cycle in the next frame, the
particles with low weights are removed. An
equivalently removed number of particles are spawned
around the particles that had higher weights [2]. By
this process, particles constantly chase an object that is
tracked.

To use particles to create a prediction model in
probabilistic motion, a predicted position is calculated
with the known Gaussian model, as described in Sec.
2.2. A particle is then put on the predicted position,
and this process is repeated until all particles have been
put on a predicted position (20 particles were used in
actual prediction). Collision and edge detection are
also employed per particle to prevent particles
developing on impossible places. More particles will
lie on more probable positions, as portrayed in Fig. 7.

Figure 7. Particle prediction, more
particles are on more probable positions

With the particles in their predictive positions, the
next frame is considered. First, all objects in the next
frame are blurred with a 64x64 σ = 8 Gaussian so that
the objects can bleed to their surroundings – this
allows particles that are closer to the centers of objects
to acquire a higher weight than particles that are farther
away. Once all weights are found, a mean probable
position

€

P (x,y) is calculated from the particles, and is
defined as:

€

P (x,y) =

Pi(x,y) *Wi
i
∑

Wi
i
∑

Where Pi(x,y) is the position of the ith particle and
Wi is the weight of the ith particle.

Effectively, the mean probable position is the most
likely next position of the object being tracked, thus
the object in the next frame that is closest to the mean
probable position is assigned as the object being
tracked.

3. Results

3.1. Deterministic model results

In the deterministic model, the predictive model
using the underlying motion is compared to the
primitive model that uses the previous velocity of the
object. In object collisions involving two objects, the
underlying model prediction rarely missed tracking.
However in the primitive prediction model, collisions
tended to confuse tracking and incorrect balls were
updated while tracking.

With a ball that collides against two wall edges, the
predicted positions in the underlying model are
compared to the actual positions (Fig. 8). The
predictions from the last velocity model are also
compared to the actual positions (Fig. 9).

Figure 8. Pr ediction using derived
underlying model vs. Actual positions in
the y-axis

Figure 9. Prediction using last velocity
model vs. Actual positions in the y-axis

48

Furthermore, tracking was tested in a setup with
many collisions. 9 balls were clustered initially and set
up to converge onto each other. In both primitive and
underlying prediction models, significant mistracking
was observed. Fig. 10 portrays the clustered setup.

Figure 10. C lustered objects
that will collide

3.2. Probabilistic model results

In the probabilistic prediction model with particles,
tracking was tested among collisions. Mistracking
occurred often during collisions of two or more
objects. Mistracking occurred significantly in clusters
of objects (Fig. 10).

The probabilistic prediction model was compared to
the actual positions of a single, undisturbed object.
The mean probable position and the actual position are
displayed in Fig. 11.

Figure 11. Mean probable prediction
vs. Actual positions in the x-axis.

4. Discussion

4.1. Deterministic model

The advanced prediction model that determines the
underlying model of deterministic motion produces
good results and works well compared to the primitive
prediction model using the object’s previous velocity.
With Fig. 8 and Fig. 9 in mind, the advanced

prediction model can almost perfectly characterize the
motion of the tracked object.

Collisions are handled decently in the advanced
prediction model – much better than the primitive
model. For one-on-one collisions, tracking is not a
problem. However in areas of many objects, both
prediction models fail. It is very possible that the
advanced prediction model needs to be optimized and
account for the physics of the motion models better.
Theoretically, it should be possible that the advanced
prediction model produces perfect or near perfect
results, particularly among collisions.

Furthermore, the model is not known immediately;
it takes several frames of motion for a Gaussian to
develop. During this learning phase, if a given object
is disturbed, the derived motion model can be heavily
skewed from its actual model.

The drawback of this approach is that it assumes a
deterministic motion model, and the type of model has
to be known (we are using a Gaussian oscillation
model). Essentially this algorithm has to be designed
for a very specific propagation model and will not
work well with any other. However, results can be very
accurate in this approach, if a deterministic motion
model was the problem at hand.

4.2. Probabilistic model

In the probabilistic model, the mean probable
predictions are adequately close to the actual positions
(Fig. 11), indicating that prediction is good. However
collisions among objects cause the prediction
algorithm to fail. It is likely that this occurs because
an opposing object moves to the most probable next
position of the object being tracked, thus causing
mistracking. Optimizing the number of particles and
adjusting the way objects bleed (we are using a 64x64
σ = 8 Gaussian blur) may reduce the mistracking.

However, it seems that the probabilistic tracking
algorithm can be very well suited for single object
tracking with a lot of noise, i.e. vibrations. We can
also limit resources by reducing the number of
particles associated to an object, which relates to
human attention. If resources were to be limited, object
tracking could also occur without having most of the
next frame information at all, as particles only need to
check weights in very specific locations.

Because the probabilistic model produces noise, a
Kalman filter [3] may be useful to reduce the noise and
find a more general propagation model. This would
allow us to focus on an object’s tendencies and global
movement, rather than the insignificant local
vibrations. However, detecting collisions still has to
be considered.

5. Conclusion

49

We have investigated methods to accurately track
objects following deterministic and probabilistic
models. In both models, improved tracking is possible
if the underlying models are deciphered. However other
identical objects, particularly during collisions, tend to
confuse the algorithms. Furthermore, the type of
model an object follows needs to be known, a
limitation the human tracking system is not subjected
to. Thus, much work needs to be done in object
tracking to approach human ability.

6. References

[1] Culham, Jody C., Brandt, Stephan A., Cavanagh,
Patrick. “Cortical fMRI Activation Produced by Attentive
Tracking of Moving Targets”, Journal o f
Neurophysiology (80), 1998, pp. 2657-2670.

[2] Hue, Carine, Le Cadre, Jean-Pierre, Pérez, Patrick. “A
Particle Filter to Track Multiple Objects”, IRISA Campus
de Beaulieu & Microsoft Research. 2001.

[3] Kalman, R. E. “A New Approach to Linear Filtering and
Prediction Problems”, Journal of Basic Engineering,
1960.

[4] Verstraten, Frans A.J., Hooge, Ignace T.C., Culham,
Jody, Van Wezel, Richard J.A. “Systematic eye movements
do not account for the perception of motion during
attentive tracking”, Vision Research (41) , Pergamon,
2001, pp. 3505-3511.

7. About the Author

Chytra Pawashe is a sophomore enrolled in the
bachelors program in Mechanical Engineering at
Carnegie Mellon University. In addition, Chytra is
pursuing a minor in robotics. His interests lie in the
fields of robotics, computing, and nanotechnology and
aims to pursue these through an engineering approach.
In his free time, Chytra performs research in the
Nanorobotics Laboratory at Carnegie Mellon
University, studying engineering topics at the micro
and nano-scale level.

Filling in missing parts of images

Andres Ivan Jager
School of Computer Science
Carnegie Mellon University

Pittsburgh, PA, 15217

Abstract

This paper describes a way of filling in missing parts of an
image. My goal was to make it as un-noticeable as possible,
while not requiring any external knowledge, and as little
user intervention as possible.

1. Introduction
The purpose of this project is to be able to remove a cer-
tain area of a picture, and have it filled in, such that it is
not noticeable. The main use for this would be removing
unwanted objects from the foreground, such as someone’s
hand at the edge of the picture, a bug flying in front of the
cammera, or a stain on someone’s shirt.

Since this is for a Computer Vision class, and not an Ar-
tificial Intelligence class, my objective is only to fill in the
hole such that it doesn’t stand out, not to make it look real
even when you know it is not. Because people know a lot
about the real world, it would be very hard to fill in a hole
such that we couldn’t see it even if we were looking for it.
Doing so would require a lot of knowledge, ranging from
what the Coca-Cola logo looks like and where you would
expect it, to who’s face you would expect to see next to a
picture of the current president.

Originally, my idea was to first decide what part of the
hole belongs to each object that surrounds it, and then fill
it in with the appropriate color/texture/gradient. As it turns
out, texture synthesis ends up doing this implicitly.

1.1. Previous Work
There has been quite a bit of work in Texture Synthesis, but
by looking at the results, the best seems to be Efros and
Leung’s algorithm [1].

There are a lot of other methods, but none of them
seemed as well suited for the job. Most of them don’t do
constrained synthesis, which is what I want, since the gen-
erated texture is supposed to look good in the context of the
rest of the picture.

There are also a lot of optimizations to Efros and Leung’s
original algorithm. Efros’ Texture Synthesis home page [3]
has links to them.

I decided to just implement the original algorithm, since
this doesn’t need to be real-time, and for this class we need
to implement it in matlab, which is the slowest language
I’ve ever seen.

2. Methods
I started by implementing the algorithm almost exactly as
described in [2].

Since for this project the source image is always the same
as the destination image, the source image has invalid pixels
in it. Originaly I compensated for this by simply leting the
valid mask infind matches() be the intersection of the
valid mask for the template, and the valid mask for the part
of the image I was testing. I also ignored the parts of the
image where the center pixel was not valid.

Basically the algorithm is like this:
1. Find all invalid pixels with valid neighbors.
2. Randomize that list and sort it in descending order by the
number of valid neigbors.
3. For each of these pixels, find the best matches, and pick
one randomly.
4. Repeat until there are no more invalid pixels.

find matches()
Finding the best matches is as follows:

1. Let template be the square region around the pixel
we are finding matches for.
2. For each valid pixel in the image take a window of the
same size around the pixel, and calculate the distance in
color space between each pixel in that window and the
corresponding pixel intemplate .
3. Set the difference between invalid pixels to 0, and weight
the others with a gaussian, so that pixels near the center are
weighted more.
4. Sum the resulting differences, and normalize it based
on how many pixels were valid. This is the error for each
given pixel.
5. Return the pixels whose error is near enough to the
lowest error found.

One problem I was having was that when trying to fill in
the trees in the picture of Efros and Leung, it would end up

50

filling in the hole with 4 or 5 solid colors. This seemed to
be because the trees are rather blury, causing the best match
for a pixel to be one of the pixels right next to it. Since in
my implementation the valid mask is just another layer of
the image, and as such is a double precicion floating point, I
abused it to indicate how “good” that pixel was, rather than
just whether it is valid or not. This discourages using the
same pixel value over and over again.

Another problem was picking a pixel where the neigh-
borhood window didn’t really have enough valid pixels for
the comparison to be accurate. For example, when all the
pixels to the left are invalid in the template, and all the pixels
to the right of the neighborhood window were invalid, the
comparison was entirely based on the pixels directly above
and below, which is not really enough information. This
problem was solved by requiring at least 1/4 of the pixels in
the intersection of the template and the region we are check-
ing to be valid.

3. Results

Matlab turned out to be even slower than I thought, so I
didn’t have much time to try a lot of different test cases. It
is probably allocating and freeing a lot of memory it doesn’t
really need to, but I decided to keep my code legible rather
than optimizing it for Matlab. Making a lot of the variables
global would probably make it a lot faster, but it would be
horrible coding style, so I decided against it.

These were done before requiring at least 1/4 of the
intersection to be valid:
A picture of Efros and Lang:

I think the window size wasn’t quite big enough for
this:

These were done with the final version:

51

All pixel values must be taken from somewhere in the
image, so the algorithm can’t continue this gradient, and
instead it fills it with a solid gray rather than gradualy
making it white.

4. Summary and Conclusions
With a few minor changes, Efros and Leung’s algorithm
worked quite well. It was also fairly easy to implement,
but extremely slow in Matlab. Filling in the picture of Efros
and Leung took several hours.

If I were to do it again, I would probably write it in either
Python, C, or maybe even ML.

References

[1] Alexei A. Efros and Thomas K. Leung, “Texture Synthesis by
Non-parametric Sampling,”IEEE International Conference
on Computer Vision, 1999.

 [2] Alexei A. Efros and Thomas K. Leung, “Algorithm details,”

 http://www.cs.berkeley.edu/ efros/research
 /NPS/alg.html

 [3] Alexei A. Efros, "Texture Synthesis,"
 http://www.cs.berkeley.edu/ efros/research/

 synthesis.html

52

���������
	���	�
�����
���
������������������������! "
��#����
�$��%���
���'&(
�����)����*�,+-�*���!�.�/�����0�����1+-����
2
� 3
�45&(
��6��)����*�
+-�*�"�!���/���7�,&��7�%���*$����98��! � �
���:;���"���*�%	��"�=<�>@?#�
 "
A���!	B��
C�����/���!��	����!�D����
��2<�>

53

54

Common Image Set Compression

Sylvain Paillard
Computer Science

(Junior, Exchange Student)
paillard@sylvain.com

Abstract

The goal of the common image set compression is
to save only once ‘blocks’ (regions) of an image that
appear several times in the image, as well as in the
other images of an image set. The prosess can be
separeted in three steps: find the common blocks,
remove blocks from a picture (compression) while
saving the positions, replace blocks in a compressed
image given a list of blocks and a list of positions. An
algorithm to find the block is suggested: it takes small
parts of the image randomly and looks for the block in
these parts. An algorithm to remove the blocks is
suggested: it removes the blocks by shifting the pixels
in order to have a smaller number of lines at the end.
Results are presented showing the different qualities
and compressions, depending on the size of the blocks,
and the maximum error allowed to consider whether
the blocks are similar.

1. Introduction

Compression is directly connected with the
information theory. We can even easily calculate the
minimal possible size of most common information
(texts, signals, …). Compressing, whether using the
the meaning of the information as a compression
parameter or not, doesn’t change the fact that the
compression will be related with the information that
the document contains. Compression and
understanding the information are, ultimately, two
different ways of looking at the same thing.

Indeed, compressing an image using a symbolic
approach (which would, for example, save a tree as a
symbol with parameters and not as a group of pixels)
is not so far in its meaning as the present zone
compression like JPEG. Of course, in the way of
working, they would be completely different, but the
final result is always the same: try to compress an
image without losing the information inside.

The idea of this project is to try to make a very
small step in this direction by making the following
assumption: if we can save the common parts of a set
of images once and for all, we will have a compression
that is trying more directly to find the common
features of these images, and therefore going in the
direction of a symbolic compression (even if no
expressable knowledge is used or found, because this
approach is completely non-parametric).

Due to the complexity of this project and the small
amount of time I had, the actual compression I will
present in the following section is not so much the
information common in a set of images, but the
information redundant in a single image, which is also
redundant in the other images of the set.

However, this approach is still trying to find
common information in the set and, as I explain it in
the appendix, this system could be used for image
discrimination.

The following sections present the system I used to
find the blocks, how I compressed and decompressed
images and what different results are found by varying
the parameters.

2. Methods

2.1. The image set

What is a good image set for this system? In fact,
all kinds of sets can be used, but the more the image
differs, the more the results are going to be
uninteresting, and the more the algorithm is going to
be slow. The image sets I used are extremely similar,
but a less similar set would still give good results.

Here is two example images of the set I used :

55

Reference : Image1

Reference: Image2

2.2. Finding Blocks

As in many search algorithms, a very easy, but
completely unrealistic, approach exists :

N = number of pixels
For all blocks Ni in N

For all blocks Nj in N

if Ni and Nj are similar and i!=j
add the block to the set

However, this algorithm is in the order of O(n2),
which overpasses 1’000 billion comparasions for a
single image, so it’s not realistic to use it.

A good alternative is to take small random subset
of the image (for example 100x100 pixels subsets) and
run the algorithm on these parts.

This is the method I used and it gave quite good
results.

The two majors inconveniences of using this
method are:

• We have no guarantees of finding all the
possible blocks (for example, a block that
occurs twice in an image, once in the left-
top and once in the right-bottom, will
never be found)

• We can have a very big redundancy of
blocks. If we are not using an exact
similitude comparison for the blocks (as
explained in the next part), we have to
filter these blocks if we want to get rid of
the many redundancies, because it will
cause a big slow down where we are
trying to find positions for the blocks in a
given image of the set.

2.3. Similar blocks

How to decide if two blocks are similar?

Lossless:

The lossless and easiest way is to consider that
they have to be exactly the same. The problem with
this method is that the probability of finding blocks
that match, even very small blocks, is very small. For
example, for a 50’000 pixel grayscale picture, I only
found 10 3x3 pixel blocks that matched.

56

Lossy with maximal error:

Another way to do it is to use a maximal error
parameter. The idea is simple: if two blocks have an
error smaller than this maximal error, they are
considered similar.

There are different ways of calculating this error; I
chose to take the sum of the square error of each pixel
difference:

Error = 0
For all pixels ai and bi of the blocks A and B

Error += (ai-bi)
2

I used the square of the pixel difference instead of
the absolute value of the pixel difference, because I
wanted to emphasis big pixel differences. Indeed, a lot
of small difference (1 or 2 over the 256 different
possible grayscale values) is much less noticable than a
few big errors.

I kept the maximal error as a global parameter to be
able to modify it, depending on the size of the blocks
and the final image quality, but a good value in order
to have a good quality is around 25 (for square of two
pixel difference)

2.4. Remove the blocks

The algorithm to find the blocks is pretty straight
forward: it looks through all the possible blocks of the
picture and compares them.

There are different ways of dealing with the
removal of the blocks:

Keeping a good zone compression:

In order to keep a good zone compression result
(using a JPEG compression, for example), it is good

to give the mean value as the value of every pixel of
the zone. Zone compression algorithms will then be
able to compress it very well.

Get a smaller image:

In order to obtain a smaller image, the blocks have
to be removed. There are several ways of doing it (take
blocks at the end of the pictures, shift the pixels, etc.).
I chose to shift the pixels from the right-bottom of the
image to the left-top. A 10% compressed image looks
then like this:

Reference: Image3

NB: This image it the result of the compression of
Image1, compressed with 10x10 blocks with an
maximal error of 1’000. We can see that the system
found many more blocks in the sky region than in the
water region (because of its bigger complexity).

I used the second method (get a smaller image),
because it was easier to obtain proportional statistics.
Indeed, the JPEG compression works in a surprising
way, and was not giving a result proportional to what I
wanted to emphasize. However, this would probably
be a wrong implementation for an application in the
real world, because the JPEG compression gives very
bad results with images like Image3 (because of the
way the zone compression algorithms work).

2.5. Positions overlapping

When an image is being compressed, should the
overlapping of blocks be allowed or not?

All the results of the next section are given with
disjointed positions, which means the blocks defined
by the positions on the picture don’t overlap. There are
several reasons to avoid overlapping:

• If a subset of the blocks are ultimately
used – which has always been the case –
this subset will be bigger, with almost no
advantages, if we allow overlapping.

• It’s much more difficult to create a
shifting function, because you can’t sum
the pixels defined by blocks to determine
the amount of shifting for each pixel.

• The decompressing time becomes fast for
a very small compression progression.

• After a certain number of overlapping, the
size necessary to keep the positions is
going to become bigger than the initial
pixels saving size (which is something
that really has to be avoided).

57

However, overlapping could be good sometimes,
for example, if two blocks are overlapping by just a
few pixels (the corners). Ideally, a complex algorithm
should be use to decide for all possible configurations
if additional overlapping should be used or not. It
could even remove old positions if new overlapping
positions give better compression results, because there
is less overlapping.

3. Results

I first tried my method with the 10x10 pixel
blocks and a maximal error of 1’000. I obtained the
blocks from Image1.

The decompressed image of the compressed image
of Image1 looks exactly like the original:

Reference: Image4

222 disjointed positions have been found, which
gives a compression of 8%.

On Image2, 230 disjointed positions have been
found, which shows that for a very similar set, the
training image doesn’t matter. If the set was more
diverse, obtaining the blocks from different images
that would be representative of the complete set would
have been necessary.

N.B.: The number of blocks in the subsets for all
the results of this section varies between 50 and 200,
depending on the case. The reason for these variations
is explained at the end of this section.

The result for 20x20 pixel blocks with 10’000 for
the maximal error results in 72 disjointed positions, so
a compression of 11%. The result still looks exactly
like the original picture:

Reference: Image5

On Image2, 52 disjointed positions have been
found, so a compression of 8%. This growing
difference between the training image and the test
images was predictable. Indeed, even if the images are
very similar, they are still different enough to give
worse results if the blocks are bigger.

Then I tried to augment the maximal error to see
when the lossy-ness started to become noticable. I used
the following picture (which a subset of Image1) .

58

Reference: Image6

It turned out that the first maximal error that was
starting to suffer noticable compression for 10x10
pixel blocks was around 10’000, as illustrated by the
following picture:

Reference: Image7

The number of disjointed positions in Image7 is
100. Which gives a compression of 30%.

Still using Image6, using 20x20 pixel blocks with
a maximal error of 200’000 gives even lossier results.
The number of disjointed positions is 20, which gives
a compression of 15%.

Reference: Image8

A very important point in these results is that,
even if the compression results are connected with the
size of the blocks and the maximal errors, they are not
only dependent on each other.

The compression also depends strongly on the
following factors :

• The size of the random subsets of the
image used to find the block

• The number of blocks in the block set
• The difference (maximal sum of square

pixels error) between the blocks of the set.

The reason for these other changes was to avoid
very big computational time variations.

For example, using more than 200 blocks for
10x10 pixel blocks and an error of 10’000 found
thousands and thousands of positions. I never let the
algorithm run until the end, because the necessary time
for compressing the image was around 15 hours.

For compression algorithm, three factors count :

• Compression quality
• Compression size
• Compression / Decompression time

Therefore, the time should still be considered,
especially for the compression and decompression time
(even if the required time for finding the blocks also
matters).

4. Conclusion

Reached:

59

• Found a reasonably good algorithm that
finds most of the possible blocks

• Created the compression and
decompression algorithm using a pixel-
shifting method.

• Succeeded to reach 30% of compression
• Found reasonable parameters for

compression.

Possible improvements:

• Create a better algorithm to find the best
possible blocks, or a better approximation
of the best possible blocks.

• Have different size, shape and orientation
blocks in order to first have more
compression with a smaller block set.

• Reach a much better compression ratio (I
think 80% would be possible in a very
similar set, such as the one I used).

• Find the function that describes the time,
the compression and the quality of the
system with all the possible variations of
the parameters (size of the blocks,
maximal errors, time necessary for finding
the blocks, compression and
decompression) to find all the interesting
maxima.

The results found in this paper are promising, but I
have to admit they are the first step in a very long
research program. A very interesting point is that I
succeeded to obtain a 30% compression for a small
image set during a 40-hour project. This result shows
that this subject has a lot of potential ,and should
definitely be continued.

It seems that the project is far from a non-
parametrical, which would lead to a better information
understanding, and I have to admit that it is true.

However, this last goal is supremely difficult to
reach, and even if this project was developed to reach
all its potential, it would still be a very small step in
the understanding of the information.

The compression and its connection to the
information – and to artificial intelligence by the same
way – is very fascinating subject and I will definitely
try to continue to follow this way. I hope some
discoveries are going to be made in this direction
soon, which will allow computer science to reach a
new level with possibilities that would seem
unrealistic now.

In the next and last section, you will see that the
compression described in this paper can already be
used as an understanding of information, which gives
some hope about the future of similar compression
methods.

5. Appendix: Image discrimination

The idea of this last section is to use the
compression ratio as a criterion to decide whether or
not a new image belongs to the initial image set.

As explained in the results section, with 10x10
pixel blocks and an error of 1’000, 222 disjointed
positions are found for Image1 and 230 for Image3.

No positions are found in the following image :

This image is obviously not part of the image set
and the number of positions found gives a very
correlated result. Therefore, another possible use of this
compression system – maybe with very different
optimal compression parameters – would be image set
discrimation.

Sylvain Paillard is from Switzerland and is an
exchange student at CMU for his Junior year. He is
pursuing a diploma at the EPFL in Lausanne
(Switzerland).

 60

Texture Characterization

Stephen Roos Sarah Schipul
Dept. of Electrical and
Computer Engineering

Carnegie Mellon University
Pittsburgh, PA 15213

smroos@andrew.cmu.edu

Dept. of Psychology
Carnegie Mellon University

Pittsburgh, PA 15213
ses@andrew.cmu.edu

Abstract

The ability to characterize textures plays an

important role in human visual perception. With this
knowledge we can describe, compare, and understand
different textures. The computational equivalent of this
ability would aid computer vision pursuits profoundly.
In this study we examine different methods of
translating human characterizations into
computational dimensions. We examine the
mathematical statistics of the images, and manipulate
them with several dimensional reduction techniques.
Our results show that it is possible to find
computational patterns within image statistics that
correlate to characterizations that humans make about
the same texture. Future work in this area can lead to
a very useful computational texture characterization
program.

1. Introduction

Understanding textures plays an important role in
human visual perception. Through characterizing
textures, we can describe textures to others, compare
different textures, and make predictions about textures
seen for the first time. Therefore, computer vision
systems would be able to learn a lot of valuable
information about their visual environment, if it were
possible to create a program that could computationally
characterize textures in a manner equivalent to the way
that people do. The goal of this study is to devise such
a program.

Previous work has been done to create a texture
naming and classification system [1]. But no such
studies have attempted to translate these classifications
into computational dimensions, to be implemented in a

program. We think it is possible to find correlations to
these characteristics in the mathematical statistics of
the image matrix. Our goal is to analyze these
statistics to find correlations to each of the
characteristic terms that we have chosen. We can then
use these correlations to create a program that can take
a given image and rate it on the characteristics in the
same way a human subject would.

2. Methods

2.1. Choosing characterization terms

First, we needed to create a list of terms to describe
the different aspects of the textures. We wanted our
terms to be independent of each other as much as
possible. We also wanted to choose terms that could
describe textures out of context. We first considered
the work of Rao and Lohse [1]. In their study on
identifying relevant dimensions of texture, they used a
list of 12 characteristic terms for describing textures.
We modified this list to meet the criteria listed above.
We ended up with 11 characteristic terms. Each term
would be rated for an image on a scale from 0 to 9.
Our list of terms can be found in Table 1. The
following is a brief description of our terms:

Contrast is a rating of how sharp the edges in the
image are. Repetitive vs. Non-repetitive rates what
percentage of the image is a repetition of other parts of
the image. Structured vs. Random rates the
randomness of the distribution of the elements in the
image. Directional vs. Non-directional rates whether
or not there is a clear direction of the distribution of the
elements. Granular vs. Non-granular rates whether or
not the texture contains an average shape (which may
be thought of as a grain) which is distributed
throughout the image. Coarse vs. Fine rates the

 61

relative size of the repeating ele ments. Regular vs.
Irregular rates the consistency in size and shape among
the repeating elements. Uniform vs. Non-uniform rates
the consistency in color among the repeating elements.
Structural complexity measures the degree to which the
image adheres to a fixed pattern of organization. Shiny
vs. Dull rates degree to which the elements emit
specular lighting (as opposed to diffuse lighting).
Rough vs. Smooth rates the variation in depth on the
texture surface.

2.2. Creating the image database

Then, we needed to create an image database. We

did a simple web search to find 100 texture images. In
creating this database, we tried to meet several criteria.
First, we wanted to represent a broad range of textures.
We would not use more than 3 images of the same
texture category. Secondly, the images all are
relatively easy to characterize using the terms we have
chosen. Also, the images should represent a wide
range of each of our chosen characteristics.

Table 1. Characteristic terms for describing textures

Low Contrast 0 1 2 3 4 5 6 7 8 9 High Contrast
Non-repetitive 0 1 2 3 4 5 6 7 8 9 Repetitive
Structured 0 1 2 3 4 5 6 7 8 9 Random
Non-directional 0 1 2 3 4 5 6 7 8 9 Directional
Non-granular 0 1 2 3 4 5 6 7 8 9 Granular
Fine 0 1 2 3 4 5 6 7 8 9 Coarse
Irregular 0 1 2 3 4 5 6 7 8 9 Regular
Non-uniform 0 1 2 3 4 5 6 7 8 9 Uniform

Low structural
complexity

0 1 2 3 4 5 6 7 8 9
High
structural
complexity

Dull 0 1 2 3 4 5 6 7 8 9 Shiny
Smooth 0 1 2 3 4 5 6 7 8 9 Rough

Once we had our image database and our

characterization terms, we needed to create human
ratings for the images. Because of time constraints and
the difficulty of conducting a psychological survey, we
decided not to do a survey of random subjects. Instead
we simply rated the images ourselves. Because we had
100 images, any personal errors in judgment would be
insignificant. Therefore, we went through and rated
each texture image on the 0 to 9 scale for each term.

2.3. Analyzing the image database

This database of images and the table of our ratings

provided our input data. First, we wanted to
statistically analyze our images. Our analysis tool first

decomposes input textures into multiple scale and
orientation bands using a steerable pyramid
implementation based on the work of Karasaridis and
Simoncelli [2]. Then, we calculate various statistics on
each of these bands and their relationship to each other,
based on the suggestions of Portilla and Simoncelli [3].
The analysis tool collects statistics such as texture
mean, variance, skew, kurtosis, range, as well as multi-
scale and multi-orientation information including
cross-correlation and auto-correlation. We also
incorporated other statistics, which include histogram
analysis of wavelet responses, Fourier transforms, and
fractal dimensionality. After performing all of the
above statistics, we had 1785 values for each texture.

2.4. Verification through synthesis

Our hypothesis was dependent on the fact that these

statistics would contain some representation of the
characteristic information. To verify this assumption
we created a synthesis package which would recreate a
texture using only the statistics for that image. We
implemented the synthesis tool described by Portilla
and Simoncelli [3]. This program does not take any
samples from the original image. Two examples of an
original texture image and its synthesized image are in
Figure 1. As you can see, the water image in Figures 1
(a) is synthesized very well. Few, if any, differences
can be seen. Therefore, all of the characteristics as
described by our terms remain preserved. Figure 1 (b)
is not a perfect synthesis, because some of the
individual nuts are morphed together. Nevertheless, all
of the characteristics judged by our terms are
preserved. Thus, we proved that our assumption was
true. The statistics did contain enough information to
predict the characteristic ratings.

(a)

(b)

Figure 1. Two examples of synthesized textures. In
each image, the outer image is the original texture, and
the inner box is the synthesized texture.

2.5. Finding correlations between
characterization terms and the statistical data

 62

Once we had a large number of statistics for each

texture, we needed to find corre lations between that
information and our rating scales for the 11
characterization terms. To do this we needed to
compare one set of statistics for all 100 images to our
ratings on all 100 images. For example, consider we
are looking at the values for mean. We have a 1x100
matrix of double values, one value for each image.
First we needed to translate these values onto a 0
through 9 scale. To do this , we divided the data into
10 bin histogram. Then, based on which bin a given
stat fell into, we changed that stat into a ranking
between 0 and 9. We also created a second version of
each stat in which the values are, instead, ranked from
9 to 0. By using both matrices, we could look for both
a positive and negative relationship with the ratings
data. Therefore, our hypothesis is based on the
assumption that any statistical data will relate to our
ratings data in a linear way. It would be too tedious
and time-consuming for us to try to re-rank the data in
non-linear ways, in order to find the best fit. So we
assume that the relationship will be linear. Once we
reformatted the values in this way, we compared them
to our ratings values, one characterization term at a
time. To compare them we found the difference
between the two matrices, and calculated the mean and
the standard deviation of the difference across the 100
samples. We added the standard deviation to the mean
to get an idea of the range in which the predicted
values would fall. We also created a variable called
quality, which calculates the accuracy, such that 0%
corresponds to random guessing and 100%
corresponds to an exact match with our personal
ratings. We are looking for the statistics that match our
human data with the lowest mean plus standard
deviation and the highest quality. This is the method
that we use to compare all of our possible correlated
rankings to our human characterization rankings.

2.5.1. Marginal statistics. Our first method to find a
correlation was to look directly at the marginal
statistics. We used our intuition to examine the
statistics which we thought would fit the data. The
ones that we looked at directly were mean, variance,
standard deviation, skew, kurtosis, and range. Some of
our predictions and findings follow. Variance looked
like a good estimate of contrast for natural images,
because sharp lines are defined by large differences in
color. The same is true for standard deviation. Skew
should be a good prediction for dimensionality,
because non-skewed elements will directly follow a
straight line. Kurtosis was recommended by other
sources as a good estimate of coarseness.

2.5.2. PCA and ICA. Principal Component Analysis
(PCA) and Independent Component Analysis (ICA)
are two methods that are commonly used for
dimensional reduction and simplification. For both of
these calculations, we used the FastICA package by
Gavert, Hurri, Särelä, and Hyvärien [4]. Initially, we
ran PCA and ICA on the images themselves; however
we immediately saw that this provided spurious results.
Therefore, we instead ran both programs on our
collection of statistics for the images. In this way we
were hoping to find certain trends or dimensions within
the set of statistics , which might correspond to our
characteristic terms . PCA reduces the number of
dimensions of the input data, by finding the most
pronounced axes of variation within the sample space.
In slight contrast, ICA reduces the dimensionality by
requiring that the components it finds will be mutually
independent. After running PCA and ICA on the
statistical data, we found some interesting results.
Again, PCA generated spurious results, probably
because of the diversity of the data. However, ICA
was able to find several patterns within the data. The
program outputs a given number of sources, which
each represent a combination of many different
statistics from the set we gave it, reduced into one
dimension. It also ranks these sources according to
how much they are represented in the original set of
data. In order to see what kind of components it
isolated, we ran the synthesis program on the top 5
sources to create a new texture. Two of the
synthesized textures can be seen in Figure 2. We
found the synthesized textures to consist of interesting
lines and edges. This may be an artifact caused by
mismatched stats (stats which couldn’t possibly be
generated by a real input image); however, it seems
that the importance of multi-scale, multi-orientation
edges may, in fact, be a principal source of variation in
textures.

Figure 2. The textures synthesized from two of the
independent sources found by ICA.

2.5.3. Local Linear Embedding. Another method of
reducing the number of dimensions in a data set is
local linear embedding [5]. This algorithm relies on
the property of local linearity of continuous curves to

 63

find linear mappings (or embeddings) of input data that
may be represented in a complex, non-linear way. For
each input data point, the algorithm first finds the K
nearest neighbors of that data point. Then it ranks the
imaginary lines between the center and the neighboring
points based on how collinear they are with other
points. In this way, curves with relatively high linear
covariance within a given K-nearest neighbor local
window are reassigned to a linear space of reduced
dimensionality, regardless of the relative complexity of
their innate relationship. We ran LLE on the statistical
output of our analysis program, and formed rankings
from the results based on the dimensions that LLE
produced.

2.5.4. Heuristics. Lastly, we used heuristics to find
matching data for the terms for which we have not yet
found a good match. First, we wanted to improve
directionality. To do this , we can look at a directional
wavelet response histogram. If a certain bin happens
to have significantly more elements than the other bins,
then the image is directional. We simply calculated the
difference between the number of elements in the most
populated bin with the number of elements in the next
highest populated bin. Second, we wanted to improve
upon repetition. We can improve repetition by doing a
Fourier analysis on the texture. This will capture the
spatial frequency of a repeating element. This
frequency is how repetitive the texture is. Thirdly, we
want to improve upon coarseness. Coarseness is often
measured by something called the Fractal Dimension
of an image. This calculation returns a value between
1 and 2. The value 1 means that the texture is not
fractal, and it doesn’t contain significant self-
similarity. If the value is 2, it means that the texture is
very fractal, and is very self-similar, and thus, very
coarse. Finally, we need to improve upon
Randomness. However, it can have a negative
relationship with structural complexity.

2.6. Rating a given test image

Finally, we have a general program that will take in
a test image, use the training set of images to create all
of the above statistics, and use those statistics to output
ratings for each of our 11 dimensions for that image.
The program first runs analysis on the 100 training
images and the test image. It then performs all of the
above analyses on the training set only and chooses the
method with the smallest error rate for each descriptive
term. It then outputs the corresponding information on
the test image for each descriptive term.

3. Results

Our results were fairly impressive. By combining
our different methods we were able to result in a
prediction model that was fairly accurate.

3.1. Marginal Statistics

The results from our marg inal statistics can be seen
in Appendix A. Because we only explored the 7
statistics we mentioned above (mean, variance,
standard deviation, skew, kurtosis, and range), we did
not find much correlation. First of all, mean tells us
nothing useful. Although we hoped variance would be
a predictor for the sharp edges in contrast, this turns
out not to be true because it does not look at the edges
at all. For example a slow gradient from black to white
would have a high variance, but would not have high
contrast.

The same is true for standard deviation. Skew does
give us a good prediction for directionality, just as we
had hoped. Even though kurtosis was recommended
for coarseness, it does not work. This may be because
they match up in a non-linear way, which our method
does not account for. Finally, range, was not useful at
all. Yet, none of these were the best predictor for any
category. Therefore, they are not used in the final
function.

3.2. PCA and ICA

As I mentioned before, we did not find any useful
information using PCA. Nevertheless, ICA provided
good results, which can be found in Appendix A. The
final function uses ICA for granularity (36% quality),
uniformity (47%), and shininess (37%).

3.3. Local linear embedding

Local linear embedding gave us very good results ,
as can be seen in Appendix A. The final program uses
LLE to determine contrast (52%), regularity (39%),
complexity (51%), and roughness (40%). As you can
see, it had very good quality ratings for the
characteristics that it is used for.

3.4. Heuristics

Our method of heuristics worked very well to fill in
for those characteristics for which we could not get
good results with the other methods. Our heuristic
results can be found in Appendix A. Heuristics were

 64

used for repetitiveness (49%), randomness (52%),
directionality (66%), and coarseness (49%).

3.5. Final program

Our results for our final program can also be found
in Appendix A. By choosing the best method for each
characterization term, the program did very well, as
our average quality rating was 45%.

4. Discussion

We showed that it is possible to create mathematical
representations of human texture characterizations.
First, when we showed that our synthesis program can
synthesize textures based on statistical information
alone, we knew that the characterizations must
therefore be represented in those statistics somehow.
Although our quality rating was around 50% for most
of our characteristics, we were still very successful.
These values are significant enough to prove that it is
possible for a computer to computationally
characterize a variety of texture images in the same
ways that humans can. Some ways that the methods
may be improved upon in the future is to first look for
non-linear matches to the statistics. Also, different
uses of PCA/ICA and LLE could be used to get better
results.

References

[1] A.R. Rao and G.L. Lohse, "Towards a Texture Naming
System: Identifying Relevant Dimensions of Texture", Vision
Res., 36(11), 1996, pp. 1649-1669.
[2] A Karasaridis and E Simoncelli, "A Filter Design
Technique for Steerable Pyramid Image Transforms", Int'l
Conf. Acoustics Speech and Signal Processing, Atlanta GA,
May 1996.
[3] J Portilla and E P Simoncelli, "A Parametric Texture
Model based on Joint Statistics of Complex Wavelet
Coefficients", Int'l Journal of Computer Vision, 40(1),
October, 2000, pp. 49-71.
[4] H. Gavert, J. Hurri, J. Särelä, and A. Hyvärien. “FastICA
for Matlab 5.x”, 2001.
[5] S. Roweis and L. Saul, "Nonlinear dimensionality
reduction by locally linear embedding", Science, 290 (5500),
Dec.22, 2000, pp.2323--2326.

Stephen Roos

Stephen is from Los Angeles, California. He is
currently a Junior in CIT. He is pursuing a double
major in Electrical and Computer Engineering and

Biomedical Engineering.

Sarah Schipul

Sarah is from Watertown, Connecticut. She will be
graduating this May with a B.S. degree in Cognitive
Science with a minor in Computer Science. In June
she is going to start working full time as a Research

Associate at the Center for Cognitive Brain
Imaging at CMU.

 65

MARGINAL STATISTICS

Characterization Difference Quality

Contrast 3.62 38%
Repetitiveness 4.16 29%
Randomness 3.98 32%
Directionality 4.90 16%
Granularity 4.24 27%
Coarseness 4.68 20%
Regularity 4.29 26%
Uniformity 3.81 35%
Complexity 3.29 44%
Shininess 4.09 30%
Roughness 4.13 29%

Average 4.11 30%

ICA
Characterization Difference Quality

Contrast 2.96 49%
Repetitiveness 3.67 37%
Randomness 3.75 36%
Directionality 4.24 27%
Granularity 3.71 36%

Coarseness 3.80 35%
Regularity 3.89 33%
Uniformity 3.07 47%

Complexity 3.14 46%
Shininess 3.67 37%

Roughness 3.60 38%
Average 3.59 38%

LOCAL LINEAR EMBEDDING
Characterization Difference Quality

Contrast 2.80 52%

Repetitiveness 3.78 35%
Randomness 3.57 39%
Directionality 4.27 27%
Granularity 3.93 33%
Coarseness 4.10 30%
Regularity 3.58 39%

Uniformity 3.23 45%
Complexity 2.86 51%

Shininess 3.77 35%
Roughness 3.52 40%

Average 3.58 39%

HEURISTICS
Characterization Difference Quality

Contrast
Repetitiveness 2.95 49%

Randomness 2.77 52%

Directionality 2.01 66%

Granularity

Coarseness 2.95 49%

Regularity
Uniformity
Complexity
Shininess
Roughness
Average 2.67 54%

FINAL RESULTS

Characterization Difference Quality

Contrast 2.8 52%
Repetitiveness 2.95 49%
Randomness 2.77 52%
Directionality 2.01 66%
Granularity 3.71 36%
Coarseness 2.95 49%
Regularity 3.58 39%
Uniformity 3.07 47%
Complexity 2.86 51%
Shininess 3.67 37%

Roughness 3.52 40%
Average 3.12 45%

Appendix A. This table contains the results for all of our methods. Textures with difference and

quality in bold indicates that that value is used in final results.

 66

Abstract

 In this paper, I demonstrate the use of the SSD
disparity detection algorithm to detect the depth
information encoded in a single image stereogram,
which is more popularly known as a “magic eye”
image. With this method I am able to extract the
outline of the image quite well, but the more
detailed depth information inside the outline is not
extracted clearly. The image is obtained by
modifying the standard disparity measurement
algorithm so that the same image is used for both
the left and the right eye and the algorithm can only
match positions to the right along the epipolar line.
This modified algorithm is meant to reproduce the
illusion seen by a person’s eye.

I. INTRODUCTION

HIS paper analyzes single image stereograms
(SISs) and single image random dot

stereograms (SIRDSs). These images are designed
such that when the viewer’s eyes are focused
beyond the image, the viewer can observe an image
popping out of the page. This image can be very
simply, such as a flat plane in some shape, or
complex, such as a full three dimensional image.
The difference between SIRDSs and SISs is that the
background image is random dots in a SIRDS and
the background is a repeating image in a SIS. The
methods for viewing, constructing, and extracting
images from both SISs and SIRDSs are the same.
 The image observed in a SIS is the result of
parallel viewing. Parallel viewing occurs when your
eyes each see the same image, but the image is not
the result of same object. When your mind notices
the same image in each eye, it assumes that the
same object caused both images, and calculates the
perceived depth accordingly. If separate objects
cause the images, your mind perceives them as a
single object in the middle of the two objects and
deeper than the two objects, closer to where the
lines-of-sight from each eye would intersect.
 The motivation for using a stereo depth
perception algorithm is that the illusion occurs
because of the assumptions the brain makes about
stereo images. You cannot reproduce the illusion

with a single eye. The algorithm I will be using1
uses sum of square of the difference (SSD) of two
windows to determine the points in each image,
along the same epipolar lines, which correspond to
each other and record the disparity. The depth is
inversely proportional to the disparity, meaning that
the greater the disparity the less the depth. The
objective is to “fool” the SSD algorithm into
observing the illusion properly by modifying it
slightly.
 The images used for this paper are the popular
images created by the magic-eye corporation [1].
The information on how the images are created is
taken from the SIRDS FAQ [3], and is based on the
work done by Dr. Julesz and Christopher Tyler [2].

II. PARALLEL VIEWING

Parallel viewing occurs when the brain sees
identical objects in each eye and assumes the images
come from the same source. The brain then
calculates the depth of the image as if both images
came from the same source. If the two objects are
closer together, the brain interprets them as having a
shallower depth. The farther apart they are, the
deeper the brain interprets them.

When your eyes are focused beyond the page,
each eye is not focused on the same point on the
page. If the image is a repeating pattern and the eyes
are focused properly, then the brain sees a pattern,
or series of patterns, in each eye and assumes that
the pattern focused on by each eye is the same,
when they are not. If a pixel is actually shifted
slightly more to the center, it will appear shallower,
and if it is shifted slightly away from center it will
appear deeper. By creating a whole series of shifts
in many patterns you can create a very complex
three dimensional illusion which is only visible
when the eyes are focused beyond the image.

A similar effect occurs when you focus in front of
the image, or cross your eyes. This method usually
produces a similar illusion, but the depth is reversed.
This is because the brain interprets the location of
the image at the point where the line of sight from
each eye would intersect. Thus in parallel viewing
this point is deeper than the actual image and in
cross-eyed viewing this point is in front of the

1 Daniel Hershey is a sophomore in the Department of

Computer Science at Carnegie Mellon University. This paper was
prepared as a course project for 15-385 Computer Vision

Daniel Hershey
Carnegie Mellon University
djhershe@andrew.cmu.edu

Single Image Stereogram Image Extraction Using SSD Disparity
Measurement

T

66

common
Text Box

 67

image.

III. CREATING SISS

To create a SIS, you first create a repeating
background pattern. This places everything at a
default depth of 0. To create a point at depth 1, you
add a pixel right before it. This increases the
distance between images to the right of the shift and
images to the left of the shift. Therefore the
perceived depth will decrease, and the points will
pop out. To decrease the depth of any pixel by one,
you add a pixel right before it. To increase the depth
of a pixel you delete a new pixel to its left. The
analysis is the same for decreasing the depth. By
repeating this process over and over you can create
the depth information for every pixel in an image.

The same system can be applied to any image
containing a repeating pattern. This offset system
allows you to create any picture you wish in the
illusion. Because of the difficulty of detecting the
patterns in the image, or even the potential absence
of a pattern to detect, it is very difficult to simply
detect where the shifts in the image are. This is one
reason why the stereo depth algorithm needs to be
applied. Also, this is just a sketch of how the images
are created. The Magic Eye Corporation probably
adds more complexity to this algorithm, and
detecting the changes to the pattern would require
some knowledge of their specific algorithm. The
approach of using stereo depth analysis to detect the
illusion is probably more robust.

IV. REVIEW OF SSD

SSD is a method used for determining the
disparity between two identical locations in stereo
images. The first task in determining the depth of
points in a stereo image is to determine the epipolar
lines between the images. These are the lines in
which everything in one image along the line

appears in the other image along the same line.
These lines can be determined based on the
locations of the cameras relative to each other.

SSD is then used to search along the line and
determine which points correspond to each other in
the image. Points are compared with each other by
taking a window of a certain size around the point
and comparing the sum of the square of the
difference between the color values at each point.
Larger window sizes result in more accurate
measurement, which reduces artifacts, but loses
more detailed information in the process. Smaller
windows result in less accurate measurement and
more artifacts, but also more detail. The window
sizes cited in this paper are half of the length of a
window’s height and width (the windows are
square).

The depth can be calculated from the disparity by
the equation

Depth = f*B/d

where f is the focal length of the cameras, B is the
distance separating the cameras, and d is the
disparity. Thus a larger disparity indicates a smaller
depth and a larger disparity indicates a deeper depth.
This method is known to work fairly well at
detecting the depth encoded by a pair of stereo
images in a controlled environment. Thus it is
appropriate for use in our application because we
have a controlled environment (the images are static
and well designed) and a pair of images that encode
the depth (the images seen by the left and right eye).

Fig 1. (Top Left) The orginal magic image and its solution
(Top right). My algorithm first turns the original image into a
disparity map (Bottom Left) and the inverts this map to get a
clear image of the outline (Bottom right). Note that the bottom
right image is the same size as all the others, just with the
right-most column being white.

Fig 2. (Top Left) The ground truth of the depth map. (Top
Right) The disparity map produced with window size 5.
(Bottom Left) The disparity map produced with w=10.
(Bottom Right) The disparity map produced with w=15.
As the window size increase, the number of artifacts
decreases and the detail decreases.

67

 68

V. THE MODIFIED ALGORITHM

The standard SSD depth perception algorithm
will not work in this case because there is only a
single image. To solve this, I need to divide the
image into two images, one for the left eye and one
for the right eye. There is no reason to assume that
each eye does not see the same image, so the same
image will be used as both the left and the right
stereo images. This introduces a problem because
every image patch will latch onto itself during the
search because the least variance achievable with
SSD is the exact same image. An entire image
comprised of zero disparity is not desirable.

This problem is addressed by forcing the
matching patch to be to the right of the original
patch. This is reasonable, as all the objects viewed
by the right eye should be to the right. This
introduces problems as well though because not all
image patches have a corresponding patch to their
right. In the actual illusion, this case is realized by
the edges of the illusion being blurry and not well
detailed. It is caused when the line of sight of one
eye lies on the image, but the line of sight of the
other eye lies off the image. This method will set a
minimum disparity of 1.

The epipolar lines used in the image are
horizontal lines because the image is generally close
enough to the eyes that no distortion should be
caused. This assumption can be checked by
observing if the image looks slanted or skewed.

The windows used in the images will be tested
with radii ranging from 5 to 15 pixels, which
correspond to window dimensions of 10 to 30
pixels. Because of the complexity of the images,
detailed information may be lost with the large
window sizes, but a large number of artifacts may
be inserted with the smaller window sizes.

The disparity information is stored at the left-
most points location in the disparity map, instead of
the midpoint as it might seem should happen,
because each point is not a midpoint of two unique
points. This could result in the depth information
being shifted left of the location that is found in the
real solution.

The returned image is the inverse of the disparity
at each point. The constants f and B are not included
in the calculation because what is most important is
the relative depth of portions of the image. Because
the image is an illusion, the literal depth has very
little meaning, and thus it is not calculated.

VI. RESULTS

By looking at the disparity measurements you can
get the best understanding of how the depth is
picked up. The outline of the image, caused by the
shifts which produce the parallel viewing illusion, is
picked up as a disparity of 1, while the interior
information appears to be shifted to the left of the
actual image.

The area of the images which is constant
corresponds to the area which is not involved in any
shifting, which is the background. The constant
factor occurs because each point latches onto its
counterpart in the next occurrence of the pattern,
which is the same distance away for all points in the
pattern. The last area of solid black occurs because
there are no more occurrences of the pattern, so the
closest match for each point is the window which
contains the most information of the original point,
which is the pixel one space to the right.

The outline of the image occurs because of the
shifting points in the image. These points do not
clearly correspond to any other points, so the
algorithm chooses the pixel directly to the right as
the closest match, hence the small disparity. This
gives a very accurate outline of the image, down to
the resolution allowed by the window size. This
limitation on the resolution is because all points
with a transition in their window will be a part of
this effect.

The outline is also recorded in less extreme
disparity measurements. These measurements are
shifted to the left of the actual outline. These are
likely caused by points which latch onto the shifts
because they are close to the pattern. They might not
find a better pattern to detect because of the large
number of shifts. This information is less precise
than the outline and there is no simple automatic
method for moving the outline overtop of this
information because you have overlapping issues.
This extra information becomes irrelevant when you
take the inverse because it is very large compared to
the outline which has a disparity of 1.
 When the inverse of the disparity is taken, the

Fig 3. (Top Left) The original image. (Top Right) The ground
truth for this image. (Bottom Left) The disparity map when
searching to the right. (Bottom Right) The disparity map when
searching to the left. All disparities in the bottom right image
are negative and all disparities in the bottom left image are
positive.

68

 69

large values obtained for most of the image go to
zero, while the ones recorded for the outline and for
the right most pattern remain one. This provides a
very clear image of the outline of the image, but
negates all aspects of the depth measurements. This
is a decent way of viewing the image for the sole
purpose of determining what the three dimensional
image is. This also retains the problem of the
rightmost pattern, but this can easily be cropped
from the image if necessary. An algorithm could be
applied to fill in the outline so that it appears to be a
whole image, but that was not done in this paper.

Due to window size constraints not every image’s
outline is clearly depicted. This restriction produces
poor results when used on images containing fine
detail separated by small spaces of short depth. A
smaller window could be used to determine the
detail, but more than likely this window would
introduce too many artifacts to clearly view the
image.
 In fact, window sizes of 5 and 10 yield images
which have large numbers of artifacts. It is not until
you reach a window size of 15 that you remove
most artifacts. At a window size of 15, however,
you do already begin to observe some effects of the
finer detail being blurred out.
 While these images were designed for use with
parallel viewing, most of them can be viewed with
cross-eyed viewing. This method of viewing can be
modeled in our algorithm by searching to the left of
the origin point instead of to the right. This produces
an image which is a mirror reflection disparity map,
except that the disparities are inversed. The inverse
of the cross-eyed disparity map is the same as the
outline of the prarllel disparity map except that the
outline is -1 instead of 1. In this respect, the
algorithm correctly models the solution because in
cross-eyed viewing the disparity is the negative of
its parallel viewing counterpart.

VII. CONCLUSIONS

It is clear that this algorithm does not detect all
the information encoded by the magic eye images. It
is, however able to accurately model the illusion in
the sense of parallel versus cross-eyed viewing and
it does produce the outline of the 3-dimensional
images.

Possible future work on this topic would include
improving the window size determination in order
to reduce the information lost without introducing
too many artifacts. A complete change of algorithms
to a pattern detection algorithm might produce
better results.
 It is possible that the information encoded within
the image is stored in a different manner than the
one described, and more information on that topic

would probably lead to better success in detecting
the information.

VIII. REFRENCES

[1] http://www.magiceye.com
[2] Tyler & Chang, Vision Research, #17, 1977.
Referenced by Tyler, 1983
 [3] http://www.cs.waikato.ac.nz/~singlis/sirds.html

Daniel Hershey is a sophomore in the department of

computer science at Carnegie
Mellon University. He is
currently taking the Computer
Vision course (15-385) with
Tai Sing lee and the Artificial
Intelligence course (15-381)
with Andrew Moore. His
potential research interests
include machine learning and

applications of machine learning to computer vision.

69

http://neevia.com http://neeviapdf.com http://docuPub.com

http://docuPub.com http://neevia.com http://neeviapdf.com

70

Recovering Unseen Images: Seeing with the “Magic Eye”

Sean O’Loughlin

Carnegie Mellon University

CIT, ECE Sophomore

solough@andrew.cmu.edu

Abstract

 This paper describes a technique which can

recover an actual image from a “magic eye” image.

A magic eye image is a single image that is capable

of storing three-dimensional depth information. It

stores this information in by separating two like

pixels in such a way that when the viewer focuses

past the plane of the image he is able to see depth.

Since these separations only occur in the horizontal

direction in “magic eye” images, this paper discusses

a technique to analyze these images and find

repeated patterns in order to recover some

information about the hidden depth image.

Background

 More commonly known as “magic eye”

images, the set of images that encode depth by

repeated patterns in the horizontal direction are

referred to as digital stereograms or autostereograms.

Stereograms were originally two images of the same

thing, but each from a different angle or position.

Because these two images were of the same thing,

corresponding points on each image could be located

and some information about the three-dimensional

depth of the object could be inferred.

 With the development of computers and other

digital technology it then became possible to create

single images to encode depth in a similar way to

stereograms. Thus, the autostereogram was born.

Autostereograms are similar to stereograms in that

there are two points that correspond to each other. The

difference is that the two points in the autostereogram

are two pixels on the same horizontal line of the

image. Because each pixel corresponds to another

pixel with exactly the same value, most

autostereograms display some form of repetition or

pattern as the image is scanned from left to right or

right to left, as seen in the following figure.

Figure 1. Example of an autostereogram

 The method by which humans are capable of

extracting the depth information is focusing on a point

behind the image so that the corresponding pixels

come together when the person is focusing at a certain

depth behind the image. Figure 2, constructed from

information given in [2], demonstrates how this works.

The person’s eyes are a certain distance apart and a

certain distance away from the plane of the image.

When he focuses to a point past the plane of the

image, he sees one pixel with his right eye and one

with his left eye. The distance between these pixels is

known as stereo separation and corresponds to the

depth that the combined viewing of the pixels appears

to be at. As the figure shows, the three-dimensional

image can have an arbitrary shape, yet can still be

represented using an autostereogram.

mailto:solough@andrew.cmu.edu

http://neevia.com http://neeviapdf.com http://docuPub.com

http://docuPub.com http://neevia.com http://neeviapdf.com

71

Figure 2. Diagram of stereo separation and viewing

depth

Revealing Algorithm

 I have termed my algorithm the revealing

algorithm because through its execution it reveals

some of the information hidden in a “magic eye”

autostereogram. The key to the functionality of this

algorithm is the horizontal repetition inherent in all

autostereograms. By doing a Fourier Transform of the

data we can analyze the repetitiveness of the image. A

Fourier Transform is a mathematical tool that takes

data in the time or space domain and transforms it into

data in the frequency domain. That is why it is useful

in analyzing repetitiveness. However as Curtis and

Zwicker point out in their paper, using a Fourier

Transform won’t generate integers for discrete data,

something that will be necessary for this algorithm’s

implementation since stereograms are discrete sets of

data [1]. However, they point out that the fundamental

period in the frequency domain corresponds to the

stereo separation of the image. They illustrate this with

graphs of frequency response and impulse response

versus normalized frequency and it is clear there is a

correlation between the two. I’ve reproduced their

graph here as figure 3.

-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5
0

0.5

1

1.5

2

2.5

Normalized Frequency

Image Frequency Spectrum

Filter Frequency Response

Figure 3. Filter Response and Frequency Response

from [1]

 The usefulness of analyzing the frequency

response of an autostereogram is that if we take a row

of data that we know has pixels mostly at a certain

depth, and find the frequency that pixels at this depth

appear, we can remove pixels at this frequency and

leave the information encoded at other depths. This

could be useful for revealing the shape of the hidden

image if we extract the frequency information for and

remove the background. However, like I mentioned

before, the Fourier Transform will not produce

integers and we will be unable to remove the all of the

information from a single depth. The solution is to use

the stereo separation of the image. Since frequency

and stereo separation are correlated, the stereo

separation (an integer value) can be used to build a

filter that will remove all the information from a

certain depth. The way to build such a filter is to make

the first entry 1, the last entry -1, and the entries in the

middle a number of 0’s equal to the stereo separation.

For example, to build a filter from a stereo separation

of 60 pixels, we would make a vector with the first

entry a 1 followed by 60 entries of 0 and finally add a

-1 as the sixty-second entry.

 Once we have our filter built, we are ready to

remove the pixels with the same stereo separation by

convolving the filter with each row of the image.

MATLAB has function that computes convolution but

I have included the mathematical representation of

convolution here in figure 4 which is described in [3].

http://neevia.com http://neeviapdf.com http://docuPub.com

http://docuPub.com http://neevia.com http://neeviapdf.com

72

Figure 4. Convolution

 Now we have sufficient information and tools

to implement the revealing algorithm. First, we need

to choose a row to be representative of the entire

image, i.e. it must contain as many depths as possible

and it must also contain the background depth. I chose

the row exactly in the middle of the image because

most of the hidden objects in “magic eye” images are

one solid object. Next, we must retrieve the stereo

separation information. To do this we start with the

first pixel and then count the number of pixels until we

find a match and store this number in an array. Then

we continue doing this for all the pixels until we reach

the end of the row. After that we remove all values

from this array that are repeated and we have an array

with all the stereo separations from that row. Now we

are ready to start filtering.

 When we have a filter, we want to convolve

it row by row with the image to produce our results.

Each row must be convolved with the same filter for

consistency. When we convolve the filter and a line of

the image, all the pixels at the depth corresponding to

the stereo separation that the filter was built from will

be equal to zero in the result. Therefore, to remove the

background (the largest section of the image), we want

to use each filter that we can build from our array of

separations and find the one with the largest area of

zeros. This will be the result with the background

filtered out. In testing, I found that in most “magic

eye” images the stereo separation of the background

was a value between 80 and 120. Therefore, I

restricted the building of filters to values that

correspond to that range.

Results

 The results turned out rather well. On all but

a few “magic eye” images that I tested, I was able to

extract the backgrounds and leave a shape

corresponding to the three-dimensional hidden image.

In most cases this figure is recognizable and you can

determine what the object is. Figure 5 is the results of

the algorithm applied to Figure 1. The hidden object is

a punk rocker. You can clearly see the outline of his

head and his spiked Mohawk haircut in the resultant

image. The white and black bars on either side are

artifacts from the filters and convolution. However, it

is interesting to note that when a human views a magic

eye image, these same areas are out of focus to him

and thus are not important to recover. I’ve also

included Figure 6, the solution to Figure 1 supplied by

[6].

Figure 5. Result of Revealing Algorithm on Figure 1

Figure 6. Solution to Figure 1 from [6]

Conclusion

 While my algorithm does not recover a three-

dimensional model of the hidden object of a “magic

eye” image, it does a good job of recovering an outline

http://neevia.com http://neeviapdf.com http://docuPub.com

http://docuPub.com http://neevia.com http://neeviapdf.com

73

of the image and makes the hidden object somewhat

recognizable. It also models human sight to some

extent, since the black and white useless areas in the

result correspond to areas that are out of focus to the

human viewer. I find it fascinating that an algorithm

based on simple mathematical principles can perform

reasonably well at modeling something as complex as

human vision and even emulate some human

characteristics in the results it produces.

References

[1] Mike Curtis and Sarah Zwicker, “Digital Stereograms”,

http://faculty.olin.edu/~jcrisman/Teaching/SigSysWeb/Proje

ct/stereograms/DigitalStereograms.doc, December 8, 2003.

Accessed April 5, 2004.

[2] Wei-Yang Lin, “A Minimal weighted Surface Algorithm

for 3D Reconstruction”, http://www.cae.wisc.edu/~wei-

yanl/cs%20766%20report.pdf, December, 2003. Accessed

April 5, 2004.

[3] Julius O. Smith III, “Introduction to Digital Filters”,

http://ccrma-www.stanford.edu/~jos/filters/, 2003. Accessed

April 10, 2004.

[4] “Introduction to Computer Programming with

MATLAB”,

http://www.phon.ucl.ac.uk/courses/spsci/matlab/, Accessed

April 10, 2004.

[5] “Autostereograms”,

http://www.psi.utoronto.ca/~trausti/stereograms/stereograms

.html, Accessed April 5, 2004.

[6] Magic Eye”, http://www.magiceye.com/, Accessed April

5, 2004.

Biography

 Sean O’Loughlin is a 19-year old from West

Chester, Pennsylvania. He is currently a student at

Carnegie Mellon University, where he is enrolled in

the Carnegie Institute of Technology. He is studying

Electrical and Computer Engineering. He is a brother

of Sigma Nu Fraternity and a member of the CMU Ice

Hockey Club.

http://faculty.olin.edu/~jcrisman/Teaching/SigSysWeb/Project/stereograms/DigitalStereograms.doc
http://faculty.olin.edu/~jcrisman/Teaching/SigSysWeb/Project/stereograms/DigitalStereograms.doc
http://www.cae.wisc.edu/~wei-yanl/cs 766 report.pdf
http://www.cae.wisc.edu/~wei-yanl/cs 766 report.pdf
http://ccrma-www.stanford.edu/~jos/filters/
http://www.phon.ucl.ac.uk/courses/spsci/matlab/
http://www.psi.utoronto.ca/~trausti/stereograms/stereograms.html
http://www.psi.utoronto.ca/~trausti/stereograms/stereograms.html
http://www.magiceye.com/

 74

Finding Waldo

Ilsun Lee and Laura Semesky
Carnegie Mellon University
School of Computer Science

151 N. Craig St. Pittsburgh PA 15213.
Email: i lsunl@andrew.cmu.edu

lsemesky@andrew.cmu.edu

Abstract
In this paper, we present a solution to the finding
Waldo problem and discuss its effectiveness. To
solve this problem we implemented variations on
normalized correlation, PCA, ICA and SIFT
algorithms. The only algorithms that yielded
acceptable results were normalized correlation and
SIFT, so these are the algorithms that are discussed
extensively.

1. Introduction
The finding Waldo problem is a variation on classical
image detection problems. The goal is to find the
character Waldo hidden in cluttered images. Waldo
is distinguishable by his red and white striped shirt
and hat as well as his hair style and facial features. In
order to find Waldo in the sample images confounds
such as pose, occlusion, scale and image distracters
need to be taken into account. Waldo is not posed
the same in all of the images, is often occluded by
other people as well as his own accessories and is not
guaranteed to be the same size. In addition, the
images are filled with a lot of red and white stripes in
order to make finding Waldo more difficult.

2. Normalized Correlation
Correlation is the measure of the degree to which two
variables agree. It does not necessarily compare the
numerical values, but examines the overall trends in
behavior. In the case of image correlation, each pixel
in the template is compared to the pixels surrounding
the corresponding pixel in the source. In the
correlation method, the template image is moved
pixel by pixel and compared to the output image.
However, in this approach the borders are not
necessarily checked because of differences in size
between the template and source image.

Figure 1.1 Correlation Method.

X is the template gray level image

X bar the average grey level in the template image

Y is the source image section

Y bar is the average grey level in the source image

N is the number of pixels in the section image (section image ==

template image size) columns * row

R is between –1 and +1, with larger values representing a stronger

relationship between the two images.

2.1 Application of Normalized
Correlation
We used a data set given to us by Professor Tai Sing
Lee of Carnegie Mellon University. The set contains
a template of Waldo and various other images which
have a reduced Waldo somewhere in the image. In all
of the non-template images, Waldo is varied in size
and position and is often times occluded by clothing
accessories or other objects in the scene. We made a
simple program in Matlab to run normalized
correlation on our test images. We used the built-in
Matlab function corr2(image.file), which does simple
correlation. The results were inconsistent, varying
among the test images.

x,y

Template Image

Input Image

I(x,y) O(x,y)

Output Image

x,y
Correlation

()

() ()
� �

�

−

=

−

=

−

=

−⋅−

−⋅−
=

1

0

1

0

22

1

0
)(

N

i

N

i
ii

i

N

i i

yyxx

yyxx
r

 75

2.2 Result of Normalized Correlation

 Figure 2.1 Waldo Template Image

Figure 2.2 Result from Correlation
 (Actual Image, Result Image, Distance
Image)

The images in figure 2.2 are from a test where
correlation did not work. The problem with using the
above template image for correlation was that the
white-space surrounding Waldo matched with white
space in the image. Because the template white-
space area was so large and Waldo is usually not
surrounded by white space, this led to a lot of false
matches. In this example, correlation found the
woman with the similarly colored shirt because the
white background matched the template. As we can
see from the pattern in the distance image, correlation
found many false matches along the white road. In
the cases where he was in front of a white
background, Waldo was detected reasonably well. In
order to achieve more accurate results, we had to find
a way of dealing with the white-space problem.

2.3 Modified Version of Correlation
To improve the template match, we made a simple
modification and considered only certain interesting
ranges of pixel values. First, we set the all the white
background values to 0. We then multiplied the new
template with the source image to produce a new
source image that only had the part of the image that
we were interested in.
Complicating matters, the corr2 Matlab function was
very time consuming. It recalculated the average
many times, had summations and used intense math
functions such as the square root. To make things
more efficient, we replaced the correlation function
with a simpler equation:

2

)(xyr −=

Where y is the source image pixel and x is the template
image pixel. Using this function, it is very simple to
compute the difference of the sum. I normalized the
value of r to be 0 to 1 by dividing by the maximum of
r value from Modified Correlation.

2.4 Result from Modified Version of
Correlation

 Figure 3.1 Modified Template

Figure 3.2 Result from Modified Correlation
 (Actual Image, Result Image, Distance
Image)

Notice that template in Waldo back ground was set to
0 compared to the original template. In the above
case, the exact same source was tested using my
modified approach. As you can see, Waldo was
found correctly in the picture. Also, we do not see
the problem where the white road part was closely
related to the Waldo template since we only
considered the part where the Waldo should be.
However, another problem arose: the new template
had a very large portion of red values to consider in
correlation case. Thus, if the picture contained a
large amount of red, it identified those areas as strong
matches.

 76

Figure 4. Result from Modified Correlation
 (Actual Image, Threshold Image,
 Distance Image, Result Image);

 The images in figure 4 are from the case where the
modified method failed to correctly identify Waldo.
As you can see, it detected the area of the woman
wearing the red full suit. However, in the distance
image, we noticed that Waldo actually showed as a
strong match. Thus, we took the threshold of the
distance image and multiplied it with the original
image to show the general area of where Waldo could
possibly exist in the picture. A general threshold
value actually worked for most of the pictures and
reduced the area to be searched by about 60 – 80 %.
In addition, as I mentioned before time constrain was
reduced as well. While it took about 115.0850 sec
with corr2 method, my modified method took about
11.7410 sec to compute the result. The result is
coming from reducing intense calculation by
excluding square root and calculating average sum.

2.5 Red Threshold Version of Correlation
To reduce the time necessary to find matches, we
modified the program to exclude the calculations
where they were not needed. For example, we found
that Waldo always contained some red colors. Thus,
if we isolated the red areas of the image using RGB
values we could reduce the calculation area. The way
it works is that the red values below some threshold
will be set to 0 and other areas will contain the
original values of red. Then if we sum the pixel
values of a source image area before the correlation,
we have some idea of whether it contains a lot of red
or not. If it is below the threshold, it skips
calculation on that area. However, there were a lot of
problems with this approach and it did not reduce the
running time very much.

2.6 Results from Red Threshold
Correlation

Figure 5. Result from Red Threshold Method

(Red Threshold Source Red Threshold Template
Distance Image, Result Image)

The pictures in figure 5 are from the modified
method. At first the threshold excluded about 50% of
area to be calculated. There was actually a lot of area
that could be skipped. However, the result was very
poor. The template contains very high red values
since white and red color from RGB contains very
high red pixel values. Thus, in actually template
matching the area with very high red color was
considered as very highly correlated area. In the
distance image in the above example, it is evident
that with the new threshold, the areas that just happen
to have many red colors are detected as highly
correlated areas. In contrast, Waldo in the source
image lost a lot of its red values because of occlusion
from his items. Thus, Waldo matched less than areas
with a large amount of red.
In addition, performance time did not decrease by
much; it took about 5.7896 sec to produce the image
in figure 5. Because our new algorithm needed to
threshold and perform additions that were not
necessary in the unmodified version, it did not
significantly reduce the performance time.

2.7 Other Method Attempts
We tried to apply other various methods to improve
the template matching. First we tried to use PCA on
the Waldo template. The result was not very good.
The reason is that PCA needs to have a data set
where Waldo is essentially exactly aligned in each
picture. Because Waldo is very small and has a very
different orientation in each picture, PCA did not
produce reasonable data to use as a template. ICA
also had very similar problems.

 77

2.8 Other Approaches
In other approaches, we performed correlation on
each Red and Green and Blue image from the RGB
image. The result was very similar to the modified
method, which just used the gray level correlation.
However, it was very time consuming since it needs
to run three sets of images. If there were some data
sets that could utilize the color differences, this
method could most likely be used as well.

 2.9 Possible Improvement
There is a lot of room for improvement in this
method. We did not actually use any orientation or
texture method such as Gabor wavelet or power
spectrum to test the image set. The red stripes of the
Waldo shirt will respond highly to values of specific
Gabor wavelet. Thus, if we use these kinds of
wavelets or power spectrums to detect the texture in
the test image set we could get better results than just
matching the template.
Also, if we could generate a PCA or ICA from the
Waldo template to extract its features it would be
more efficient in running time and would capture
Waldo more effectively. In order to do PCA and ICA,
however it would require a lot of data sets and a lot
of fixing by hand to actually find matches.

 2.10 Conclusion of Correlation
Correlation is method that is good when there is very
similar or exact match exists in the picture. However,
if the template is very small and it is not an exact
match, there could be various problems in template
match. Since the small error will account for a big
part of the correlation values, it is generally good
idea to consider only the area that is really needs to
be matched.

3. SIFT: Scale Invariant Feature
Transform
SIFT seemed like a good approach to take in solving
our problem, because it is robust against changes in
conditions such as lighting, scale, rotation, noise and
occlusion. Essentially the way SIFT works is that it
searches both the template and test images for
keypoints that will not be affected by various changes
in conditions. It seemed to be ideal for our purposes,
because for any given 500x500 image, on average
thousands of keypoints are generated, but only a few
are needed for a correct match. This way, Waldo
being occluded by his accessories or other objects in
the image would matter less.

3.1 Application of SIFT
In testing the effectiveness of SIFT in the finding
Waldo problem, we used both the C implementation
written by David Lowe, and the Intel Matlab code by

Scott Ettinger. In both methods, the best-bin-first
search method described in the “Object recognition
from local scale-invariant features” paper by David
Lowe was used to match keypoints in the template to
keypoints in the test image.

Using the Intel SIFT code, various keypoints were
identified on our Waldo template. The features it
seemed to pick up on the most were several of the
stripes, Waldo’s hat, hair and hand.

Figure 6.1 Comparison of keypoints found in
template image (top) and test image (bottom)

As demonstrated in figure 6, there are several
matching keypoints in the template and test images.
The most noticeable keypoints were the ones on the
hair and stripes of the shirt.

3.2 Results of SIFT
The results of running the SIFT algorithm on the
Waldo template were hit and miss. Sometimes
Waldo would be detected easily, and other times
there were a lot of false matches, or Waldo would not
be identified at all. We had to try many different
parameters in the algorithm before we found values
that actually generated enough keypoints. The other
variable we had to change around was the threshold
for discarding a match in the best-bin-first matching
technique. If the threshold was too low, we got a lot
of extraneous matches, but if it was too high, no
matches were returned.

 78

FF

Figure 6.2 Two sample Waldo matches using David
Lowe’s SIFT code.

The question then became whether the inaccurate
matchings were resulting from the implementation of
the algorithm itself, or whether the algorithm just
wasn’t suited for the data. In order to test whether
the problem was that the template of Waldo was not
consistent enough with the Waldos in the test images,
we tried running the algorithm using Waldo
templates taken from the test images themselves.
This approach yielded much higher success rates, the
algorithm finding the correct match each time. The
threshold for matching could be a lot lower for the
images without returning extraneous matches, thus
increasing the certainty of the resulting match.

Figure 6.2 Using the extracted Waldo yields much
more accurate matches

We also tried using different sizes of Waldo as a
template to see if we could improve matches. The
larger the template, the more keypoints were
generated, which did lead to more accurate matches.
However, the Waldos in the test images were too
small to generate many keys to compare with.
Increasing the size of the image caused our system to
run out of memory, so we were not able to see if this
might alleviate some of the matching issues.

3.3 Conclusion of SIFT
SIFT turned out to not be the best approach for this
problem. There are several possible sources of error
that could account for this. The first issue that seems
to be one of the biggest sources of error is the size of
the templates and the size of Waldo as he appears in
the test images. In order for SIFT to work, the
template images and test images need to be large
enough to generate enough keypoints. We do not
feel that we were able to make our test images large
enough to be able to find Waldo consistently. A
second source of error is that the values used in the
keypoint matching algorithm and/or the values used
to generate keypoints were suboptimal. Since there is
not really a set formula for how to determine these
values, the values we used might not be the best
values for our dataset. We tried to find the best
values through trial and error, but the values still
might not be ideal. The answer might just be that
SIFT is not a good algorithm to use on this dataset. It
could be that the distracter images present in the
image had many of the same keypoints, so when
other variations occurred, SIFT was not correctly
able to find Waldo. Another problem might be that
our template of Waldo is not generic enough to find
permutations of Waldo in the image. Results listed in
other papers that have previously examined SIFT
seem to be much more accurate than the results we
obtained. Both code implementations of SIFT
preformed equally bad. This leads us to believe that
the error is either in the image set we have, or in the
matching implementation itself.

4, Conclusion
In conclusion, image detection (and matching in
general) is a difficult problem. First you there has to
be criteria that is easy to find in the image you are
looking for that is also unique to the image, As well
as robust against noise and occlusion. Once a
measurement system is set up to compare the
template to the test image, then there has to be an
algorithm for deciding whether a hit is actually
correct or not. Out of the methods we examined,
correlation seemed to yield the best results. Though
the running time was about five times as long as the
running time for the SIFT algorithm. We feel that

 79

many improvements could be made to the algorithms
we used to determine matches.

References

[1] Distinctive image features from scale-
invariant keypoints
David G. Lowe, accepted for publication in the
International Journal of Computer Vision, 2004.

[2] Object recognition from local scale-invariant
features
David G. Lowe, International Conference on
Computer Vision, Corfu, Greece (September 1999),
pp. 1150-1157.

[3] Invariant Features from Interest Point
Groups,
Matthew Brown and David G. Lowe British Machine
Vision Conference, BMVC 2002, Cardiff, Wales
(September 2002).

Ilsun Lee is a sophomore in the
School of Computer Science at
Carnegie Mellon University.

Laura Semesky is a sophomore
in the School of Computer
Science at Carnegie Mellon
University. She is getting a
minor in Fine Arts. She enjoys
art and hopes to be able to
incorporate it into her studies
in computer science.

Mishkin Face Recognition

Michael Mishkin
Electrical and Computer Engineering

Carnegie Mellon University
mmishkin@andrew.cmu.edu

Abstract

In this project a face recognition system is
implemented and trained to recognize images of
Mishkin (the author) using PCA with eigenface
selection. The classifier software package identifies
Mishkin’s face with 95% accuracy.

1. Introduction

The ability to recognize familiar faces is inherent to
the human visual system and is an ability that is a
necessity to our daily social interactions. This skill is
so well developed that we can recognize people under
different conditions, facial expressions, and even slight
changes in facial features such as facial hair or glasses.
Modeling such a system has been the focus of study
for many computer programmers for the past two
decades. With such a multitude of potential practical
applications as criminal identification in security
systems, a computer user greeting and identification
system [1] or other aspects of human-computer
interaction, face recognition is quite a fertile area of
study. My project for computer vision is a model of
such a face recognition system in the Matlab computer
programming environment intended to pick out images
of my own face among images of other people’s faces.

2. Methods

The first aspect to be considered in development of
a classifier to identify faces is a method for encoding
the faces such that they can be described as a single
vector of feature coefficients. An encoding of this form
is very useful in the comparison of different faces. For
this reason, I chose a PCA based model in which the
feature vectors are based on eigenface weights that can
be set as the coefficients for a weighted sum of the
eigenfaces to accurately reconstruct the original image.
Since the eigenfaces used for encoding are the same
throughout the image set, the feature vectors found

with this method are very good relative representations
of each face.

2.1 Principal Component Analysis

Principal component analysis is used to decompose
a set of images into a set of principal component
images called eigenfaces. Images can be projected into
the subspace of eigenfaces which can be considered
the face space [2]. Each eigenface can be thought of as
an orthogonal axis in this face space such that an
image can be mapped to a set of coordinates describing
the strength of each principal component. Once a face
has been translated into this form, recognition can be
done by simply locating the face in the face space and
comparing its location to that of the trained set.

With PCA the original image can actually be
regenerated with relatively little loss of detail. This is
because PCA finds the weighted sum of eigenvectors
that best approximates the original image. As more
eigenfaces are taken into consideration in this
weighted sum, the resulting image becomes more and
more similar to the original face. If all of the
eigenfaces are considered in the weighted sum then the
reconstructed image should be roughly identical to the
original image.

2.1.1 PCA Eigenface derivation. The first step in
principal component analysis of a set of images is
deriving the eigenfaces that best describe that set. A
training set is required to base the eigenfaces on and
the more images there are in the training set the more
eigenfaces will be derived. If the training is set too
small, for example if it is only based on a set of images
of one person, then the set of eigenfaces will be very
good at reconstructing the images of that person but
will leave artifacts of the training set in other images
and will be a fairly poor reconstructions of the original
images. For this reason, in order to gain versatility in
the range of images that can be reconstructed, it is
necessary to use a sufficiently large database of
images.

80

 81

2.2 The ORL Face Database

The database used in this project is the ORL face
database which was collected between April 1992 and
April 1994 at the Olivetti Research Laboratory in
Cambridge, UK[3]. The image set contains ten images
of forty different people for a total of 400 images. All
of these images were taken in up-right frontal position
on a dark homogeneous background. Otherwise, the
images vary in such characteristics as head tilt, facial
expression, and lighting conditions. Each of these
images is 92 pixels ear to ear and 112 pixels chin to
hair.

Figure 1. Sample images from ORL Face Database

2.3 Eigenface derivation

The eigenfaces were derived from the first 35
people in the ORL face database. Since there are 350
images total of these 35 people (ten images of each)
there were a total of 350 derived eigenfaces. This
dataset was sufficiently large to calculate enough
eigenfaces to describe a fairly diverse set of images
accurately including images outside of the training set.

The eigenface derivation process was loosely based
on an adaptation of Matlab code by A.I. Wilmer [4].
His implementation was fairly simple. First the code
reads in every image in the training set into a 3d matrix
data structure. Once all of the images have been read
in then a mean image is calculated. Then the difference
between each image and the mean is stored in a second
array of images. This step is important since it
standardizes the images around a mean face which is a
good reference point to be doing calculations from.
Each of these difference images is reshaped to a 1d
array to be passed into the svd function which
calculates the eigenvectors and eigenvalues. The
eigenvectors are then reshaped to the dimensions of the

images to become the eigenfaces used for image
reconstruction.

2.4 Training

Once the set of eigenfaces has been generated the
program is ready to begin training. The idea is that
after training, an input image can be compared to a
mean image for recognition and if the input image is
similar enough to this mean it is considered to be a
match. The mean image is the resulting image from
averaging each of the features of the images in the
training set. With the mean image calculated the next
step is to find the similarity between each of the
training images and the mean image. So the question
becomes how to judge similarity to this mean face. By
finding the Euclidean distance of each feature vector
from the mean feature vector, a value can be associated
with how similar the image in question is to the mean.
The greatest of these distances among the training
images is set as the threshold for a recognized face.
Any images found with a distance above this threshold
are other people’s faces.

Figure 2. Training Set Images

To train for images of my face requires an

addendum to the ORL face database. The addendum
includes thirty images. Ten of these images are images
of me used to train the classifier (Figure 2) and the
other twenty are some images of me and some images
of my friends to be used as the test set once training is
complete. All of these images were standardized to the
same image specifications as described earlier. The
most significant difference between the new images
and the images in the original database is the
background color of the images. In order to
compensate for this difference the eigenface weights of
the addendum may be slightly shifted. Although this
may help in discrimination between my face and the
faces in the ORL face database this variable is kept
constant between the images of me and the images of
my friends. Since the main test set is intended to be of
me and my friends, the common background color
shouldn’t have much of an effect on discriminability of
my face however it may lead to some false positives

 82

depending on the size of the resulting shift in eigenface
weights.

2.5 Eigenface selection

With the training set converted to feature vectors of
eigenface coefficients the classifier is essentially ready
for recognition. The recognition system described
earlier suggests that for the Euclidean distance
calculation, the entire feature vector should be taken
into account; however, it may be possible to get better
results by just selecting those features that are the best
at recognizing the faces in the training set. In essence
what is needed is a heuristic for eigenface selection.
The heuristic that is used is a variation on Fisher
discriminants.

2.5.1 Fisher Discriminants. Fisher discriminant
analysis is a method for determining how well a
feature discriminates between two sets of images. For
example, if there are two image sets each
corresponding to a different person and the eigenface
coefficient feature vectors have already been
calculated for each person, the weights of a particular
feature in the images from each image set could be
analyzed with Fisher discriminant analysis. The Fisher
function (which was copied from Michael Schultz’s
code from homework 4) takes two vectors as input and
outputs a single value which is proportional to how
well each vector is clustered as well as how well the
two vectors are separated. If the values between each
vector are separated but the values within each vector
are grouped together then the output value will be high
and the feature in question is good at discriminating
between the two people. However if the two vectors
are intermixed and scattered then the output value will
be low and the feature in question is not good at
discriminating between the two people. Fisher can be
applied to every feature for these two people to find an
array of values associated with each feature. This array
is sorted so as to rank the features in discriminating
between the two people.

Since the goal in this project is to be able to
recognize images of me this Fisher process is applied
to each and every person in the ORL image database
and the images of me. So, Fisher compares me to the
first person then me to the second person and so on
resulting in a series of ranking arrays for each
comparison. The top forty features in each of these
ranking arrays cast a vote for which features are the
strongest overall. At this point, a cutoff is set for how
many eigenfaces are to be taken into account in
calculation of distance from the trained mean image.
Finding this cutoff requires some calibration. Since the
selected features are the best at discriminating between

the trained person and everyone else this should yield
better results than when all of the eigenfaces were
taken into account.

3. Results

The first classifier that is tested takes all of the
eigenfaces into account in the calculation of the
distance from the mean. When the classifier is run on
all of the images in the ORL image database none of
the images are detected as images of me. Even among
the test set, there were no false positives however some
of the images of me were not identified. This seemed
to only occur in cases when my facial expression was
exaggerated. This method was identified 90% of the
twenty pictures of me between the test set and the
training set. The classifier’s test set output can be seen
below in figure 3.

Figure 3. Sample output of classifier

Recognition of a few of the people in the ORL

database was also tested with this classifier. Since
there were no test images for these people and their
database images were used as the training set (which is
inherently recognized) the classifier test for these
people was limited to a test of the precision of the
classifier and in most cases there were no false
positives.

Before the classifier with eigenface selection could
be tested some calibration of the number of eigenfaces
to select was necessary. The best amount for the test
set turned out to be 23 eigenfaces but since this was
the only training set there was no way to check if this
would hold true for another training set. Any amount
that was chosen above 23 began to introduce false
positives while maintaining similar accuracy while
amounts less than 23 eigenfaces were less accurate in
identification of images of me. With 23 eigenfaces
95% of the images of me were identified with no false
positives. So Fisher discriminants for eigenface

 83

selection turned out to result in the best classifier of
images of me.

4. Discussion and Conclusions

The classifier using the entire set of eigenfaces is
surprisingly good at identifying images of me. As
expected slightly better results are possible with
eigenface selection but the amount of calibration that
was necessary to get such accurate results introduces
some doubt as to whether the classifier would be as
accurate with a different training set, without
necessitating further calibration. None the less, the
classifier as it stands can identify images of me from
among a set of images in excess of 400 faces of over
40 different people. The next stage for this software
package would be to train for more than one person.
This would be entirely possible with the current set up
of the program and would only require an additional
check for the rare case that an image were below
threshold for recognition of more than one person. If
this were implemented it would also be nifty to
implement a nicer GUI for the program and perhaps an
interface for loading new images into the database. It
may even be possible to classify facial expressions
using similar methods but that would be a different
project altogether.

5. References

[1] Bansal, Arjun, “User-identification using Face
Recognition Algorithms”, CNS 186 Final Project Report,
March 2004.

[2] Matthew Turk and Alex Pentland, "Eigenfaces for

Recognition", Journal of Cognitive Neuroscience, Volume 3,
No. 1, 1991, pp 72-86.

[3] F. Samaria and A. Harter, "Parameterisation of a

stochastic model for human face identification", 2nd IEEE
Workshop on Applications of Computer Vision, December
1994, Sarasota (Florida).

[4] A. I. Wilmer, “Matlab Code for Eigenfaces”,

http://www.ecs.soton.ac.uk/~aiw99r/faces/, Sept 2002.

Michael Mishkin is a junior in the Integrated
Masters/Bachelors program in Electrical and Computer
Engineering at Carnegie Mellon University. Hailing from
New Jersey, he enjoys long nights of code hacking and
Krispy Kreme Donuts.

Carnegie Mellon University
CS 15-685 Computer Vision
Spring 2004, Project Final Report

84

Face Recognition using SIFT features

Rohit Patnaik
Department of Electrical and Computer Engineering

Carnegie Mellon University, 5000 Forbes Avenue, Pittsburgh, PA 15213
rpatnaik@andrew.cmu.edu

Abstract

A combined face detection and recognition
approach is examined. It is based on the scale-
invariant feature transform (SIFT) algorithm. The
database consists of images containing the target face
with variations in illumination, pose, and scale. A
simplistic method for performing recognition using the
SIFT features is evaluated. A current method of
performing 3D object recognition based on the SIFT
features is analyzed.

1. Introduction

Object detection is an important step in object
classification. Efficient and accurate methods for
detection enable the overall classification system to be
implemented in real-time with higher accuracy. Object
detection is complicated by variations in lighting and
pose of the object(s) in the target scene and possible
occlusion from other objects. Face detection is even
more challenging due to intra-class variations caused
by changes in appearance and expression.

Much prior work exists on object detection in
general and face detection in particular. In Ref. [1], a
probabilistic model of local appearance and spatial
relationship is constructed to perform object detection.
The algorithm explicitly models and estimates the
posterior probability, P(object|image). Another method
for face detection uses a boosted cascade of simple
features [2] based on the AdaBoost algorithm [3].
Both methods have been shown to provide very good
results for object detection (including face detection).

The purpose of this paper is to examine
simultaneous face detection and recognition. A two-
step detection/recognition method may be employed to
solve this problem. Detection can be carried out using
one of the methods described before. This needs to be
followed by a subsequent recognition step. Face

recognition can be performed in one of two main ways
– template-based approach and model-based approach.
In the template-based approach, one creates a template
of the object by extracting feature vectors from a set of
training images. One extracts the same features from
the test image and computes a distance metric based on
which a recognition score is assigned. In the model-
based approach, the image is fit to a geometric model.
This is achieved by estimating the parameters of the
geometric model that best represent the data. Based on
the computed parameters, the recognition (verification
or classification) score is assigned.

Instead of taking a two-step approach, one can
perform simultaneous detection and recognition. One
way to combine the two objectives would be to create
training data using the methods in [1] or [2] for a
specific face. One potential drawback of the
algorithms in [1] and [2] is that to recognize an object
under different variations, those variations must be
included in the training process. Recently, an object
recognition approach has been proposed based on the
scale-invariant feature transform (SIFT) described in
[4]. The features are invariant to image scale and
rotation, and are shown to provide robust matching
across a substantial range of affine distortion, change in
3D viewpoint, addition of noise, and change in
illumination. By using these features and only using a
few images in the training set, one can hope to achieve
reliable recognition.

In this paper, I examine the SIFT-based approach of
performing face recognition under illumination, scale
and pose variations. I present a simplistic method of
performing face recognition with the SIFT features,
which is found to give poor results. I examine the
cause for the poor matches, and present the method in
[5] to perform 3D object recognition. That algorithm
combines multiple images of a 2D object into a single
model representation. The rest of this paper is
organizes as follow. Section 2 describes the SIFT
feature extraction algorithm. Section 3 presents my

 85

simplistic algorithm for performing face recognition
with the SIFT features. Section 4 presents results using
my approach along with an analysis of its failures.
Section 5 gives an overview the 3D object recognition
algorithm described in [5].

2. SIFT feature extraction

The SIFT features are invariant to image scaling and
rotation, and are partially invariant to changes in
illumination and 3D camera viewpoint. They are well
localized in both the spatial and frequency domains,
reducing the probability of disruption by occlusion,
clutter, or noise. A cascade filtering approach, in
which the more expensive operations are applied only
at locations that pass an initial test, minimizes the cost
of extracting these features. Following are the major
steps in generating the set of image features (keypoints)
(the figures in this section have been taken from [4]):

2.1. Detection of scale-space extrema

The first stage of keypoint detection is to identify
locations and scales that can be repeatably assigned
under differing views of the same object. This is
accomplished by searching for stable features across all
possible scales, using a continuous function of scale
known as scale space. It has been shown by
Koenderink (1984) and Lindeberg (1994) that under a
variety of reasonable assumptions the only possible
scale-space kernel is the Gaussian function. The scale
space of an image is defined as a function,

),,(σyxL , that is produced from the convolution of a

variable-scale Gaussian,),,(σyxG , with an input

image,),(yxI :

),(*),,(),,(yxIyxGyxL σσ = , (1)
where * is the convolution operation in x and y, and

��
�

�
��
�

� +−= 2

22

2 2
exp

2
1

),,(
σπσ

σ yx
yxG . (2)

To efficiently detect stable keypoint locations in scale
space, the scale-space extrema in the difference-of-
Gaussian (DOG) function convolved with the image,

),,(σyxD is used, which can be computed from the
difference of two nearby scales separated by a constant
multiplicative factor k:

),(*)),,(),,((),,(yxIyxGkyxGyxD σσσ −=
),,(),,(σσ yxLkyxL −= . (3)

An efficient approach for the construction of
),,(σyxD is shown in Figure 1. The initial image is

incrementally convolved with Gaussians to produce
images separated by a constant factor k in scale space,
shown stacked in the left column. Adjacent image
scales are subtracted to produce the difference-of-
Gaussian images shown on the right. Once a complete
octave has been processed, the Gaussian image that has
twice the initial value of � is downsampled by a factor
of two in each direction.

��������	������������	�
������	��	���
������

In order to detect the local maxima and minima of

),,(σyxD , each sample point is compared to its
eight neighbors in the current image and nine neighbors
in the scale above and below (this is illustrated in
Figure 2, the pixel marked X is compared to its 26
neighbors in 3x3 regions in current and adjacent scales,
marked with circles). It is selected only if it is larger
than all of these neighbors or smaller than all of them.
Since most of the sample points are eliminated after the
first few checks, the cost of this check is reasonably
low.

�������
 	� � ������	�� 	�� � � � �� � � � �� � � ���� � � ��� �� �� � � � �
�� � � �

 86

2.2. Accurate keypoint localization

Once a keypoint candidate has been found by
comparing a pixel to its neighbors, the next step is to
perform a detailed fit to the nearby data for location,
scale, and ratio of principal curvatures. This
information allows points to be rejected that have low
contrast (and are therefore sensitive to noise) or are
poorly localized along an edge. For stability, it is not
sufficient to reject keypoints with low contrast. The
DOG function will have a strong response along edges,
even if the location along the edge is poorly determined
and therefore will be unstable to small amounts of
noise. A poorly defined peak in the difference-of-
Gaussian function will have a large principal curvature
across the edge but a small one in the perpendicular
direction. The principal curvatures can be computed
from a 2x2 Hessian matrix, H, computed at the location
and scale of the keypoint:

�
�

	

�

�
=

yyxy

xyxx

DD

DD
H (4)

The derivatives are estimated by taking differences of
neighboring sample points.

2.3. Orientation assignment

By assigning a consistent orientation to each
keypoint based on local image properties, the keypoint
descriptor can be represented relative to this orientation
and therefore achieve invariance to image rotation.
The following approach is used to assign local
orientation. The scale of the keypoint is used to select
the Gaussian smoothed image, L, with the closest scale,
so that all computations are performed in a scale-
invariant manner. For each image sample,),(yxL at

this scale, the gradient magnitude,),(yxm , and

),(yxθ is precomputed. An orientation histogram is
formed from the gradient orientations of sample points
within a region around the keypoint. The orientation
histogram has 36 bins covering the 360 degrees range
of orientations. Each sample added to the histogram is
weighted by its gradient magnitude and by a Gaussian-
weighted circular window with a � that is 1.5 times that
of the scale of the keypoint. The highest peak in the
histogram indicates the orientation of the keypoint.

2.4. Keypoint descriptor

The previous steps assign an image location, scale,

and orientation to each keypoint. These parameters
impose a repeatable local 2D coordinate system in

which to describe the local image region, and thus
provide invariance to these parameters. The next step
is to compute a descriptor for the local image region
that is highly distinctive yet is as invariant as possible
to remaining variations, such as change in illumination
or 3D viewpoint. Figure 3 illustrates the computation
of the keypoint descriptor. Using the precomputed
gradients computed using the algorithm in Section 2.3,
the image gradient magnitudes and orientations are
sampled around the keypoint location, using the scale
of the keypoint to select the level of Gaussian blur for
the image. The coordinates of the descriptor and the
gradient orientations are rotated relative to the keypoint
orientation in order to achieve orientation invariance.
The gradients are illustrated with small arrows at each
sample location on the left side of Figure 3.

�������� 	�� 	� � ��� ��	��	��� �� � 	����� �
���� �	�

A Gaussian weighting function with � equal to one

half the width of the descriptor window is used to
assign a weight to the magnitude of each sample point.
This is illustrated with a circular window on the left
side of Figure 3. Doing so avoids sudden changes in
the descriptor with small changes in the position of the
window, and to give less emphasis to gradients that are
far from the center of the descriptor, as these are most
affected by misregistration errors.

The keypoint descriptor is shown on the right side
of Figure 3. It allows for significant shifts in gradient
positions by creating orientation histograms over 4x4
sample regions. The figure shows eight directions for
each orientation histogram, with the length of each
arrow corresponding to the magnitude of that histogram
entry. A gradient sample on the left can shift up to 4
sample positions while still contributing to the same
histogram on the right, thereby achieving the objective
of allowing for larger local positional shifts. The
descriptor is formed from a vector containing the
values of all the orientation histogram entries,
corresponding to the lengths of the arrows on the right
side of Figure 3. The figure shows a 2x2 array of
orientation histograms, whereas in [4], a 4x4 array of
histograms with 8 orientation bins in each is used.

 87

Thus a 4x4x8=128 element feature vector is used to
describe each keypoint. Finally, the feature vector is
modified to reduce the effects of illumination change.

3. Simplistic recognition algorithm

Keypoints from a set of training images are
extracted and stored. Keypoints are extracted from the
test image. For a given keypoint in the test image, its
Euclidean distance is computed from each keypoint in
the training set (using the keypoint descriptor). If the
ratio of the distance of the closest keypoint to the
second-closed keypoint is below a threshold, the match
is rejected. The idea behind this is that since the
keypoint descriptors are supposed to be highly specific,
if the ratio of the distances is low, it indicates that the
keypoint in the test image cannot be matched well to a
unique keypoint in the training set. I chose 0.6 as the
threshold.

An implementation of this method (the results are
shown in the next section) indicated that enough
matches were not being obtained in the test image
containing the target face. Thus, I was not able to
complete the face detection step. During the course of
writing this paper, an explanation for the above
phenomenon was found. If the training images are
sufficiently similar, then they may give rise to
keypoints with simlar descriptors. In that case, if a
keypoint from the test image has a high ratio of the
closest to the second-closest distance, that might be due
to it matching similar (correct) keypoints in the training
set. I should have used the threshold metric for
comparing the keypoint against all keypoints in one
training image, and repeated the process separately for
each training image. I was not able to find a way to
combine the keypoint matching information across
various training images.

4. Results

I chose to perform recognition on my face. Figure 4

shows all the images in the database (labeled 1-21 left
to right and top to bottom). The database consists of
21 color images of me under different illuminations
and 3D viewpoints, and with varying backgrounds.
Some pictures are with glasses while others are
without; one picture contains another person in the
scene. Some of the pictures contain an occluded
version of my face. I converted all the images to
grayscale. I chose five pictures (images 3-7) as the
training set. I cropped the images from 480x640 pixels
to 144x192 pixels to only contain the face region.. I
used the Invariant Keypoint Detector demo software

[6] to extract the keypoints from the training images.
Figure 5 shows the training images along with the
training images with the arrows overlayed indicating
the locations, scales, and orientations of the key
features.

�������� 	��� � � ��� � �� � �
�

�������
 	�� �� ����� �
���� �� ��� ��� ���� �� �� � 	���

Figures 6 and 7 show the keypoint matches for a
good match and a poor match. The training images are
shown above the test image. The white lines shown in
the image connect keypoint in the test image to its best
match in the training set (if it passes the distance-ratio
threshold test). Note that while the test image in Figure
6 contains the target face that looks very similar to one
of the training images (the one containing the matching
keypoints), the test image is taken under different
lighting and at a different zoom (scale) and the test

 88

image shows the face with glasses. The 3D viewpoint
is almost identical. This shows that the keypoints can
be matched in the presence of illumination and scale
variations. The target image in Figure 7 has a 3D
viewpoint that is very similar to one of the training
images. Therefore, it is surprising that good keypoint
matches could not be found. Increasing the value of
the distance-ratio threshold from 0.6 to 0.9 in
increments of 0.1 led to an increase in the number of
keypoint matches, however most of the additional
matches were due to background clutter. Thus, this
method of keypoint matching is not a reliable way to
perform recognition. If one restricted the pose
variations and used more training data at a restricted
number of poses, one should be able to obtain better
results even with the naive approach.

�������� 	��� � � � ��	��� �� 		� �� � ���

�������� 	��� � � � ��	��� �� 		��� � ���

5. 3D object recognition

The algorithm presented in Section 4 was based on
matching keypoints in the test image to individual
training images. As such, it is difficult to combine the
keypoint matching information across training images
at various poses, to identify the pose of the object in
the test image. This difficulty is overcome by the
algorithm presented in [5], that combines multiple
images of a 3D object into a single model
representation. This view clustering method provides
for recognition of 3D objects from any viewpoint, the
generalization of models to non-rigid changes, and
improved robustness through the combination of
features acquired under a range of imaging conditions.
The decision of whether to cluster a training image into
an existing view representation or to treat it as a new
view is based on the geometric accuracy of the match
to previous model views. A new probabilistic model is
developed to reduce the false positive matches that
would otherwise arise due to loosened geometric
constraints on matching 3D and non-rigid models.

It should be noted that the algorithm presented in [5]
relies on both a bottom-up and a top-down approach.
It is a non-trivial method and requires the building up
of a probability model.

6. Conclusion

The scale-invariant feature transform (SIFT) method
has been examined for its applicability to for detecting
a target face under variations in illuminations and 3D
viewpoint. A simplistic method for keypoint matching
presented here gives poor results. In order to use the
keypoints effectively for face recognition across pose a
more complicated method needs to be used which
involves both a bottom-up matching scheme, based on
a distance metrics and Hough transforms, and a top-
down scheme based on prior probability models for the
number of matches.

Future work will involve the evaluation of the view
clustering method for 3D face recognition.
Implementation of a method for performing recognition
for small variations in illuminations and pose will serve
as good starting point.

Acknowledgments

The author would like to thank Prof. Tai Sing Lee of
Carnegie Mellon University, who was the instructor for
the Computer Vision course, for providing valuable
guidance for this project.

 89

References

[1] H. Schneiderman and T. Kanade, “Probabilistic modeling

of local appearance and spatial relationships for object
detection,” CVPR 1998, pp. 45-51, June 1998.

[2] P. Viola and M. Jones, “Probabilistic modeling of local
appearance and spatial relationships for object
recognition,” CVPR 2001 1, pp. 511-518, December
2001.

[3] Y. Freund and R. E. Schapire, “A decision-theoretic
generalization of on-line learning and an application to
boosting,” in Computational Learning Theory: Eurocolt
’95, pp. 23–37, Springer-Verlag, 1995.

[4] D. G. Lowe, “Distinctive image features from scale-
invariant keypoints”, accepted for publication in the
International Journal of Computer Vision, 2004.

[5] D. G. Lowe, “Local feature view clustering for 3D object
recognition,” CVPR 2001 1, pp. 682-688, December
2001.

[6] “Invariant Keypoint Detector Demo Software,”
http://www.cs.ubc.ca/~lowe/keypoints/

Rohit Patnaik is a senior in the
Department of Electrical and
Computer Engineering (ECE) at
Carnegie Mellon University
(CMU). He will receive his BS
and MS degrees in ECE in May
2004 with college and university
honors. He will be pursuing a
Ph.D. degree in the area of Signal

Processing in the ECE dept. at CMU beginning May 2004.

Winning Patterns in Go

George Fraser
Carnegie-Mellon University

Pittsburgh, PA 15217
gfraser@andrew.cmu.edu

Abstract

In the realm of computer game-playing, the game of Go rep-
resents a notable failure of traditional, search-based arti-
ficial intelligence algorithms. This is the result of its ex-
tremely high branching factor, with up to 361 moves avail-
able to a player. Expert human players contend with this
by approaching the game in a highly visual, intuitive way.
In this paper principal component analysis is used to iden-
tify patterns in expert Go play. These patterns are shown
to be meaningful by constructing a regression model which
uses the patterns to determine the winning player given an
end-game board state.

1. Introduction

Go is an unusual game that has eluded traditional game-
playing algorithms. Originating in east Asia, it has at-
tracted attention in the western world as markedly differ-
ent from games such as chess and checkers. For the same
reason it has attracted the interest of AI researchers: unlike
most board games, it is completely unsuitable for minimax
search. The simplicity of play, in which each open space
allows a single move, belies the difficulty of the game: the
branching factor of search is prohibitively high. This is the
result of the large size of the board, and the fact that virtu-
ally all plausible moves are available at every turn. Go and
chess are often compared as difficult and popular games,
and this comparison serves as a good example of what
makes a game suitable or unsuitable for minimax search:
chess has a much smaller board, with 64 versus 351 avail-
able squares, and at any given time many of the pieces will
be blocked, limiting the space of legal moves.

Expert human players tend to approach Go in a highly vi-
sual way. The only effective Go programs similarly rely on
huge databases of patterns encompassing up to millions of
rules [1]. These rules can be created using a variety of meth-
ods, and in some programs they are manually programmed
in by human experts. The identification of patterns which
are relevant to the game is an important task in improving
the performance of computer Go players.

1.1. Previous Work

There has been extensive work on computer Go. A good re-
view is Computer Go: an AI Oriented Survey[1] by Bouzy
and Cazenave. The work most immmediately relevant to
this paper isLocal move prediction in Go[3] by Werf et. al.
The authors used principal component analysis (PCA) to re-
duce the dimensionality of Go games and to provide inputs
to a neural network which evaluated the strength of game
positions. While the network was unable to play with any
competency, and was too computationally slow to incorpo-
rate into a search algorithm as an evaluation function, it was
able to choose the next move given a game in progress with
some degree of success. Their work demonstrates that PCA,
among other similar algorithms including some of their own
making, is capable of reducing the dimensionality of Go
board states.

Principal component analysis and independent compo-
nent analysis are used extensively in this paper. They can be
thought of as rotations of the coordinate system in which the
data exists. Consider our data: case Go board windows with
49 locations having either a white stone (encoded as 1), a
black stone (encoded as -1), or no stone (encoded as 0). We
can consider each window to be a point in 49-dimensional
space. The axes of this coordinate system are straightfor-
ward: each represents to one of the 49 positions varying
between white, black, and neutral. We can, however, re-
represent this system by rotating the coordinate system such
that each axis now represents a combination of several lo-
cations varying to different degrees.

Principal component analysis gives a representation
which is optimally compact in the least-squares sense: that
is, each successive axis minimizes the remaining error in
the data set. Independent component analysis attempts to
maximize the gaussianity of the data with respect to each
independent component; that is, it attempts to identify com-
ponents which are uncorrelated with each other.

In this study it is hoped that PCA or ICA will be able to
identify meaningful patterns in Go boards. The fact that the
data is of professional play means that it will be clustered in
regions which correspond to meaningful patterns. Compo-
nent analysis should be able to pick up on these clusters.

90

2. Methods
The data used in this study were the records of the Kisei
tournament matches between 1977 and 1996, a total of 119
games. They are available for download online [5]. The
end-game board states were computed using WinMGT, a
freely available interpreter for the go game records.

Many7 × 7 windows were collected from the boards to
provide training data. A few examples are shown in figure
1. In order to prevent the analysis from being confounded
by repetitions of the same patterns translated as the window
is moving across the board, all windows were centered on a
simple corner feature (figure 2). This method is analagous
to that of the SIFT algorithm [2]. The boards are rotated
and inverted (figure 3) in order to get all the usable data
and to generate boards from the perspective of both winner
and loser. Windows where the corner feature belongs to the
winning player and those where the it belongs to the losing
player are analyzed separately. The 50 boards in the set
gave about 2000 windows after rotation and inversion.

3. Results
Independent component analysis, ICA with dimensionality
restricted to 10, and principal component analysis were ap-
plied to the data. In all cases the FastICA package was used
to perform the computation. In unrestricted ICA and PCA
the number of components was limited by the algorithm to
46 for obvious reasons: a7 × 7 windows has 49 spaces, 3
of which are by definition part of the corner feature, leaving
only 46 directions of variation.

Unrestricted ICA gave what is in retrospect an expected
result: most of the components were simply single points
on the board (figure 4). This makes sense, because the win-
dows are a linear sum of 46 different elements.

Restricting the ICA to 10 dimension gave more interest-
ing results (figure 4). The patterns are now more complex.
Principal component analysis gives patterns which on their
face appear similar.

In order to veryify whether these patterns were actually
meaningful, ordinary least-squares multiple regression was
used to create a model for the “winning-ness” of7× 7 win-
dows with the corner feature. The same training data that
generated the principal components was used to construct
the regression model. The coefficients of the regression
model are plotted in figure 5.

The regression model was then tested against both the
same training data and a new validation set of 10 more end-
game boards. To determine the winner given a board, all
of the windows with the corner feature are identified and
fed into the regression model. The resulting values for each
window are summed together and form the overall index for
the board. If it is positive, it is indicated that white (encoded
as +1) is the winner.

������������������
	��������
�
	����������
	���������
�
	���������
�
����
�
�
��

������������������
����������
�
�����������
	���������
�
����������
�
�
�
�
�
�
���

������������������
�����������
�����������
�
������������
�
����������
��
������

����������	�����
�
	��������
�
	���������
�
	����������
�
	�������
�
��
�
��
���

Figure 1: Examples of windows in the data set.

�������	������
	������
	�������
	��������
	������
�������

Figure 2: Go corner feature.

91

	���������
	�������
	���������
	��������
	����������
	��������
�������

	���������
	�������
	���������
	��������
	����������
	��������
�������

Figure 3: Inverting the board.

ICA Restricted ICA PCA

Figure 4: First ten independent components of windows
in the data set. Components from independent component
analysis, ICA where dimensionality has been restricted to
10, and principal component analysis are shown. Compo-
nents derived from patterns belonging to the winner are on
the left, from the loser on the right.

0 10 20 30 40 50 60 70 80 90 100
−3

−2

−1

0

1

2

3
x 10

14

Figure 5: Regression model for winning as a function of the
response of corner windows to principal components.

PCA ICA (restricted)
Training Data: 39/50 33/50

Validation Data: 9/10 7/10

Figure 6: Accuracy results for PCA and restricted-ICA
based winning models.

As may be expected the unrestricted ICA was unpredic-
tive. Apparently the patterns in the game are too complex
to be captured by a simply linear model of stones gener-
ated by regression. However, both restricted ICA and PCA
showed predictive power. The results are shown in figure 6.
To check that the model was not simply counting stones, a
straightforward counting algorithm was tested and showed
no significant predictive power.

4. Summary and Conclusions

Determining the winner of a Go game by the state of the
board at the end is a definitely not a trivial problem. In
the tournament games used in this study, much of the win-
nings are implicit. Stones are assumed to be lost, territory
taken, without the scenario actually having been played out.
Professional Go players know when to give up on a region,
and so these end-games are highly incomplete. Most of the
games in this tournament were won not by counting up ter-
ritory and prisoners, but by the resignation of one of the
players, who sees a hopeless situation. WinMGT, which is
capable of computing the score from the record of the game,
adding up all prisoners and territory, was not able to deter-
mine the outcomes of the games correctly.

In light of this one cannot help but to be somewhat sur-
prised that this algorithm worked at all. It is a rather simple
technique applied to a very complex problem. The predicive
power of the model indicates that the principal components

92

1 2 3 4 5 6 7

1

2

3

4

5

6

7

�������	��������
�
���������
�
	�����������
������������
�
	���������
�
��
��
�
����

������������������������
���������
���������
�
����������
�
�����������
�
����
�
�
���

�������	�������
	�������
	��������
	��������
�
	���������
�
�������

Figure 7: Windows which per-stone garnered the greatest
response from the first principal component of the set of
winning windows in the data.

must have a significant meaning in terms of the structure of
advantageous Go positions. The fact that the unrestricted
ICA model, which was effectively just a linear model of the
presence of the stones at each location, did not work further
indicates that the patterns derived from PCA are meaning-
ful.

We can attempt to find out what the meaning of these pat-
terns is by determining those windows in the data set which
are most similar to the principal components and therefore
make the greatest contribution to the model. We can refine
the criteria to be the greatest similarity per stone in the win-
dow, in order to avoid choosing only densely packed win-
dows which are harder to interpret. Presented in figure 7
is one example, showing 9 windows which were most sim-
ilar to the first principal component of the data. Notably,
identical7 × 7 windows were found in several cases.

Upon inspecting these results and the windows which

���������	�����������
�����������
�
������������
�
����������
�
	����������
�
�
��
�
���

�������������	��������
�
������������
�
�������������
	��������
�
�����������
�
��
�
��
�
���

�������������������������
�
������������
�
������������
�
	���������
�
	�������
�
����
�
�
���

Figure 8: Windows which were determined by the regres-
sion model to have the highest likelihood of being part of a
board where white won.

responded best to four other principal components I could
identify no clear patterns. I then identified those windows
deemed by the regression model most likely to be part of a
winning board. Several are presented in figure 8. They were
also unfortunately rather uninformative.

Future work could focus on using these patterns derived
from PCA as part of a computer Go player. They could
form the basis of an evaluation function, or a move-ordering
function to improve pruning. There are many opportunities
for improvement on the existing algorithm, the most imme-
diate of which would be the inclusion of features other than
corners, and training on a larger data set.

Acknowledgments

Dr. Tai Sing Lee provided invaluable suggestions along the
way for how to turn a rather abstract idea about patterns in
Go into a testable algorithm.

References

[1] B. Bouzy, T. Cazenave. “Computer Go: an AI Oriented Sur-
vey”. Artificial Intelligence, Vol. 132(1), pp. 39–103, October
2001.

93

[2] D. Lowe, “Distinctive Image Features from Scale-Invariant
Keypoints”.International Journal of Computer Vision, 2004.

[3] E.C.D. van der Werf, J.W.H.M. Uiterwijk, E.O. Postma, H.J.
van den Herik. “Local move prediction in Go”.In LNCS
2883: Computers and Games. Third International Confer-
ence, CG 2002.

[4] FastICA Toolkit, Helsinki University of Technology.
http://www.cis.hut.fi/projects/ica/fastica

[5] http://www.cs.ualberta.ca/ mmueller/go/kisei.html

The Author

George Fraser is from the New York area and is a Junior
in the bachelor program in Cognitive Science at Carnegie
Mellon University. He is currently working as an under-
graduate research fellow under Dr. Daniel J. Simons at the
University of Pittsburgh Neurobiology department.

94

	vidit.pdf
	vidit.pdf
	1. Introduction
	2. Background Modeling
	3. Boxing
	4. Tracking
	4. Height Detection
	5. Results
	6. References

