CIS 630 Homework #3
Due: October 10 (Wednesday) at class meeting.

Problem 1 — A Search Exercise (30%).

The figure below shows a graph structured representation for a search problem. Suppose
that A is the initial node from which a search starts, and G is the goal node where a search
ends. List the nodes in order they are visited by each of the following four search algorithms.
Notice that the graph is not a tree, we need to mark the nodes which are visited. For the DFS
and BFS, a child node will not be added to the OPEN list if it has been visited before (i.e. if
it is in the current open or closed lists).

1. Depth-First Search.
2. Breadth-First Search.

3. Iterative Deepening Search (Starting with a depth bound D4, = 0, and increasing D4,
by A = 2 each time).

4. A heuristic search using f(s) = g(s) + h(s). For each node s, use its depth for g(s) (e.g.
g(X) =1), and h(s) is the number shown in the node. When there is a tie in number, the
nodes are then ordered in their alphabetical order.

Note that this is a search in a graph not a tree, in order to find the optimal path (lowest
cost), the algorithm should update the f(s) value for node s in the OPEN list. It proceeds
in the following way. Suppose the algorithm is about to insert a new node s with an
evaluation value f(s) in the OPEN list. But it finds that s is already in the OPEN list
with a value f'(s) calculated by a previous route. If f/(s) > f(s), then the algorithm
should remove the old s node from the OPEN list and insert the new s with value f(s).
Otherwise, it disregards the current f(s), and does not insert a second s.




Problem 2 — Uninformed Search (20%) .

Consider a complete tree of depth D and branching factor b (in our notation, the root
always has depth 0). Suppose the goal node is at depth g < D.

1. In this tree, what is the number of terminal nodes (leaves)? and what is the number of
non-terminal nodes?

2. What is the minimum (best case) and mazimum (worst case) number of nodes that might
be generated by a depth-first search algorithm with maximum search depth bound D?

3. What is the minimum and mazimum number of nodes that might be generated by a
breadth-first search algorithm?

4. What is the minimum and mazimum number of nodes that might be generated by an
iterative deepening search algorithm? Suppose it starts with depth 0 and increase depth
by 1 each time.

Problem 3 — Heuristic Search (25%) .

For a heuristic algorithm to be optimal, a sufficient condition is that h(s) is admissible,
h(s) < h*(s) =c(s,sq9), s€Q

Is this a necessary condition for optimality? If yes, prove it. If not, provide a counter-example.
That is, to find an h() which does not satisfy the admissible condition and still the heuristic
search algorithm using this A(s) can find the optimal solutions for general graphs. (I mean,
you cannot provide an example which only work for a special graph of your choice.)

Problem 4 — Heuristic Search (25%) .

Let A} and A5 be two A* search algorithms with heuristic functions hj(s) and ha(s) re-
spectively. We say that A% is more informed than A} if

hi(s) < ha(s) < h*(s); VseQ.

Prove that the nodes searched by A3 is always a subset of those searched by Aj. In other
words, the CLOSED list of A3 is a subset of the CLOSED list of AJ.



