CIS 630 Lab Optimization Search Algorithms

Due on Oct 26 at class meeting.

Objectives and grading policy.

This second lab is designed as an example to walk through the optimization search
algorithms. It consists of two parts. One is genetic algorithm which is required for this
lab, and the other is a Gibbs sampler which is optional. The Gibbs sampler is an ad-
vanced topic in modern search algorithms, you will receive bonus grade by implementing
this algorithm. The bonus grade works in the following way. If you compute the right
result using Gibbs sampler, your final CIS630 grade will be upgraded by one level. For
example, from B to B+, or from A- to A etc. In fact, the code is no more than 80 lines of

c code if you do it right !

Background material.

The figure below shows a physical system called the Ising model, named after a
German physicist. Ising model is a classic mathematical model in statistical physics, and
it holds the key to understanding many complex systems as well as to the design and

analysis of stochastic algorithms.

Consider a physical system with N spins arranged in a ring. Each spin has two
states: upward or downward representing the directions of its magnetic field decided
by the clockwise or counter clockwise spinning of electrons. The state of the system is

described by a N-vector

s = (zo,21,...,ZN-1), ;i € {—1,1} Vi.
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In real world case, one can imagine an 2D matrix of spins or 3D volume of spins for

magnets. To simplify the problem, let’s consider this 1D example for convenience.

The energy of this physical system is decided by two factors. One is the interactions
between two neighboring spins x; and z;4; for all ¢ = 0,..., N — 1. If the two spins have

the same directions (z; = z;41) then the system has a relative lower energy. Otherwise if



two neighboring spins have different directions, then the system has higher energy, and we
say the magnet has a “crack” at position 7. The second factor is the interaction of each
spin with the external magnetic field. Without loss of generality, we assume the external
magnetic field is upwards in our example (see the figure above). Thus the system has
lower energy if the spins are oriented along with the external field. The total energy is

the summation of the two factors over all spins.

N-1 N-1
E(s) = -« Z Ti - Tiy1 — Z T,

where zy = 19, @« = 0.5, = 0.05. To make this clearer, if z; and z;11 have the same
signs, then the product z; - ;41 = 1, and thus the system has low energy. Otherwise the

product is —1 and system has high energy if they have opposite signs.

We further define a fitness function for the system.
fs)=eBO) seq={-1,1}".

Obviously the lower the energy, the higher the fitness function.

It is not so hard to realize that the lowest energy state is s* = (1,1,1,...,1). However,
a computer doesn’t have this intuition, and it has to do an optimization search. As we
define before, the goal of an optimization search algorithm is to find the state s* with
lowest energy (globally optimal) in the configuration space Q = {—1,1}%.

st = argr&a{gcf(s).

This is really hard, because the search space ) can be large, imagine N = 10?3 in real
physical systems ! Just remind you: in comparison with the blind and heuristic search,
each state s is assigned a fitness function, and we may not be able to find the globally

optimal state s*. We may only find a nearly optimal one.

Now, our goal is to design computer algorithm that can effectively search for lower
energy states. As a matter of fact, it is reasonable to think that our computer program is
“simulating” the physical process. Because the states of a physical system is dynamically

changing overtime to achieve some low energy, and thus stable states!



Experiment 1, Genetic algorithm (required) .

Write a program using your familiar language (C, C++, matlab) to implement the
Genetic algorithm as it is stated in the handout and the lecture. Choose N = 64 spins,
and keep n = 8 genotypes (chromosome) for each generation. Note that the handout ex-

ample has 4 bits for each of the 4 genotypes, and we use 64 bits for each of the 8 genotypes.

Let me briefly overview the algorithm. It consists of three steps to go from generation

m to generation m + 1: reproduction, crossover, and mutation.

Initialization, you select n = 8 genotypes at random: each genotype has N = 64 spins

and each spin takes value —1 or 1 at even chance. Thus you get generation m = 0:
G() = {81, 82y cuuy Sn}.

Then repeat the following steps for going from generation m to generation m + 1.

1. Reproduction. Draw n genotypes from the set G,,. Each genotype s; in G, has a

f(s:)
f(s1) + f(s2) + -+ f(sn)

Obviously, genotypes (or systems) with lower energies have higher chances to reproduce

chance to be chosen:

themselves. Drawing from G s n times with a replacement sampling, we obtain a new set

g1 = {Sgl)a Sgl)a () 3%1)}'

Some genotypes may repeat many times in g; and some may not present.

2. Cross-over. from the set g1, we pair each two genotypes s%il and 352_2 for ¢ =
1,2,...,n/2. Each pair has ¢ = 0.6 (60 percent chance) probability to exchange genes,
with 40% chance to remain unchanged. If it decides to exchange genes, you draw two
random positions b, be € {0,..., N — 1} for the starting and ending break points, and do

the crossover. Thus you obtain a new set

go = {ng),ng), ...,3%2)}.

3. Mutation. Then for each spin z; in each genotype at go (we have total N X n spins),
it has a v = 0.03 probability (3% chance) to mutate, i.e. to flip its sign.

Then you obtain a new set called generation G, 1. Repeat the three steps

1. Try M = 64 generations. For each generation, output the best genotype (print out

a 0/1 sequence with o for -1 and 1 for 1). Then show the two performance curves:



the fitness function of the best state s and the average fitness function. Plot the
logarithm of the fitness function log p(s) = —E(s) against the generation 1,2, 3,...M

as it shows in the handout.

2. Run a second experiment and plot the two performance curves for M = 128,n =

16,q = 0.6,y = 0.03. (no output for the genotype this time).

3. Run a third experiment for M = 128,n = 32,9 = 0.8,y = 0.03. Plot the two

performance curves (no output for the genotype this time).

4. Run the 4th experiment for M = 128, n = 32,9 = 0.8,y = 0.2

Explain the differences between the four groups of experiments. You need to write

about 100 words to compare the experiments, and the influence of parameters M, n,q, .

Hand in your plots and a hardcopy of your code.



Experiment 2, Gibbs sampler and simulated annealing (optional).

Suppose we normalize the fitness function so that ) .o p(s) = 1.0 and introduce the

temperature parameter 7', thus

1 —E(s

where Z(T) is a normalization factor which is a function depending on 7.

Z(T) =Y e POIT,

SEN

Obviously, p(s;T) is a probability distribution over Q. Note that we don’t need to com-
pute this normalization constant Z (7). Also both the probability p and the constant Z
depend on the temperature 7.

Now, let’s overview a widely used stochastic search algorithm, called the Gibbs sampler.
The Gibbs sampler simulates a random walk in the space 2. It starts with an arbitrary

state sg, and thus generate a sequence over time

SnySn+1ySn+2y --+y Sntt-

Note that we only work with one string of spins each time instead of a population.

After a “burn-in” period n, somebody has proven a theorem for us that is the sampler
visits the state s € 2 according to p(s;7T) — what a useful conclusion!

At each iteration, suppose s; is the current state, the Gibbs sampler does the following.

1. It picks up a spin z;,i € {0, N — 1} at random. That means, each spin has equal

chance to be chosen.

2. Given the spins z;,j # %, compute the conditional probabilities for z; = —1 and
z; = 1, denoted by p_1,p1 respectively. (p—1 + p+1 = 1.0) [You fixed all the other

spins except x;.
3. Draw a random number d € [0,1], and set z; = —1 if d < p_;. Set z; = 1 otherwise.
4. repeat 1-2-3 N times, and this is called one sweep.

One sweep is like one generation in the Genetic algorithm.



Answer the Following Questions.

e State the nature of p(s;T) for two extreme cases: T = oo and T' = 0. That is,
describe the probability p(s;T) for how the probability mass is distributed among

the 2"V states in the two extreme temperatures.

e Explain the purpose of “simulated annealing” (reducing 7' from a very high temper-
ature to a very low temperature), given your answer to the above question and the
property of the Gibbs sampler. Your answer should be less than 60 words. Can the
Gibbs sampler find S* eventually if we play with a simulated annealing strategy?

Explain why?

e Choose N = 64, Implement the Gibbs sampler for 250 sweeps. For the first 50
sweeps, set T' = 4. For sweeps (50,100), set T = 3. Sweeps (100,150) set T = 2.
Sweeps (150,200) set T'= 1. Sweeps (200, 250) set T' = 0.5.

e Plot the logarithm of the fitness function —FE(s;) for a state s; at the end of sweep
t=1,2,..,250.

The above Gibbs sampler is about the same computational complexity as the genetic
algorithm, try to compare their performances.
In fact, you can play with the annealing scheme (decide how to low the temperature),

soon you can reach the optimal state s* = (1,1,1,...,1) — the pure crystal.



