Plaut, D. C. (1992). Relearning after damage in connectionist networks: Implications for patient rehabilitation. Proceedings of the 14th Annual Conference of the Cognitive Science Society (pp. 372-377). Hillsdale, NJ: Lawrence Erlbaum Associates.

Download: pdf (6 pages, 154 Kb)

Abstract: Connectionist modeling is applied to issues in cognitive rehabilitation, concerning the degree and speed of recovery through retraining, the extent of generalization to untreated items, and how treated items are selected to maximize this generalization. A network previously used to model impairments in mapping orthography to semantics is retrained after damage. The degree of relearning and generalization varies considerably for different lesion locations, and has interesting implications for understanding the nature and variability of recovery in patients. In a second simulation, retraining on words whose semantics are atypical of their category yields more generalization than retraining on more prototypical words, suggesting a surprising strategy for selecting items in patient therapy to maximize recovery.

Copyright Notice: The documents distributed here have been provided as a means to ensure timely dissemination of scholarly and technical work on a noncommercial basis. Copyright and all rights therein are maintained by the authors or by other copyright holders, notwithstanding that they have offered their works here electronically. It is understood that all persons copying this information will adhere to the terms and constraints invoked by each author's copyright. These works may not be reposted without the explicit permission of the copyright holder.